
www.manaraa.com

Data Structures and Algorithms
for the Optimization

of Hierarchical Hybrid
Multigrid Methods

Datenstrukturen und Algorithmen
zur Optimierung

hierarchisch-hybrider
Mehrgittermethoden

Der Technischen Fakultät der
Friedrich-Alexander-Universität

Erlangen-Nürnberg

zur Erlangung des Doktorgrades

Doktor-Ingenieur

vorgelegt von

Tobias Gradl
aus Kösching

www.manaraa.com

Als Dissertation genehmigt
von der Technischen Fakultät
der Friedrich-Alexander-Universität Erlangen-Nürnberg

Tag der mündlichen Prüfung: 8. Dezember 2015

Vorsitzender des Promotionsorgans: Prof. Dr. Peter Greil

Gutachter: Prof. Dr. Ulrich Rüde
Prof. Dr. Günter Leugering

www.manaraa.com

Abstract

Multigrid methods are among the theoretically most efficient algorithms in numer-
ical simulation. They solve certain classes of equations—e. g., those arising from fi-
nite element (FE) discretizations—with optimal complexity. Practically relevant for
large-scale simulations, however, are only algorithms that exploit the massive par-
allelism that characterizes today’s high-performance computing landscape. Imple-
menting multigrid methods efficiently on massively parallel computers is challeng-
ing, because for some of the core algorithms the distribution of the numerical oper-
ations to many processors is not straightforward.

Bergen et al. proved with the Hierarchical Hybrid Grids (HHG) software frame-
work that it is possible to solve FE simulations efficiently with multigrid methods on
supercomputers [10]. The central concept of HHG is to discretize the simulated do-
mains into patch-wise structured meshes. It facilitates the distribution of the com-
putational work to many processors, but it also restricts HHG’s flexibility regarding
the types of numerical problems it can be applied to.

This thesis presents performance studies for FE simulations with up to 3×1011

degrees of freedom that demonstrate short time to solution and good scalability of
HHG on up to 16 384 processor cores. We describe the modifications to the initial
version of HHG [10]—e. g., in the build system and the performance measurement
methods—that were necessary in order to execute and study HHG on systems of this
size.

The central chapter of the thesis is dedicated to adaptive mesh refinement (AMR).
The technique makes HHG applicable to a new class of problems, which is charac-
terized by a strong variance in the required mesh resolution across the domain, e. g.,
the simulation of room acoustics or turbulent flows. AMR allows for the FE mesh to
be tailored flexibly to the simulation’s characteristics. The multigrid solver can thus
spend the computer’s resources—memory and processor cycles—on areas where
the simulation requires a high resolution. In consequence, the time to solution de-
creases and the problem size that can be handled increases. When implementing
AMR for HHG, it was important to maintain the numerical and software engineer-
ing concepts that are crucial for HHG’s performance and scalability. We describe
how the algorithms and data structures were extended in order to achieve this goal.

There are many other techniques for optimizing the distribution of computa-
tional resources in multigrid algorithms. As a contrast to AMR, we present a tech-
nique that was developed in joint work with Thekale et al. [47]. A branch and bound
search is used to find the optimal number of V-cycles on each level of a full multi-
grid algorithm. By performing V-cycles on the levels where they yield the best ratio
between error reduction and cost, the time to solution of a full multigrid run in a
realistic scenario was reduced by 35%.

www.manaraa.com

www.manaraa.com

Zusammenfassung

Mehrgittermethoden gehören zumindest theoretisch zu den effizientesten Algorith-
men in der Numerischen Simulation. Einige Klassen von Gleichungen, z.B. die bei
der Disktretisierung mit Finiten Elementen (FE) entstehenden Gleichungssysteme,
sind damit unter bestimmten Voraussetzungen in optimaler Komplexität lösbar. Für
die Anwendung im High-Performance-Computing sind jedoch nur Methoden rele-
vant, die den extremen Parallelismus aktueller Supercomputer ausnutzen können.
Mehrgittermethoden effizient für Parallelrechner zu implementieren ist eine Her-
ausforderung, weil für einige der zentralen Algorithmen das Verteilen der numeri-
schen Operationen auf viele Prozessoren nicht trivial ist.

Mit dem Software-Framework Hierarchical Hybrid Grids (HHG) zeigten Bergen
et al., daß effiziente FE-Simulationen mit Mehrgittermethoden auf Supercompu-
tern möglich sind [10]. Das zentrale Konzept von HHG ist die Diskretisierung des
simulierten Gebiets in abschnittsweise strukturierte Gitter. Das erleichtert das Ver-
teilen der Rechenoperationen auf viele Prozessoren, schränkt allerdings auch die
Anwendbarkeit von HHG auf bestimmte numerische Probleme ein.

Diese Arbeit demonstriert mit Performance-Studien auf bis zu 16 384 Prozes-
sorkernen und FE-Simulationen mit bis zu 3 × 1011 Freiheitsgraden die hohe Ef-
fizienz und Skalierbarkeit von HHG. Um HHG auf Systemen dieser Größe ausführen
und analysieren zu können, waren Änderungen an der ursprünglichen HHG-Version
[10] nötig, z.B. am Build-System und an den Methoden zur Performance-Messung.

Das zentrale Kapitel der Arbeit widmet sich der adaptiven Gitterverfeinerung
(AMR, von adatpive mesh refinement). Diese Technik erweitert den Anwendungsbe-
reich von HHG auf Probleme mit starker räumlicher Varianz in der benötigten Git-
terweite, z.B. die Simulation von Raumakustik oder von turbulenten Strömungen.
AMR ermöglicht eine flexible Anpassung des FE-Gitters an die Simulationscharak-
teristika. So können die Ressourcen des Computers – Speicher und Prozessorzyklen
– gezielt dort eingesetzt werden, wo eine hohe Gitterauflösung nötig ist, und damit
die Rechenzeit verringert und die lösbare Problemgröße erhöht werden. Bei der Im-
plementierung von AMR in HHG war es wichtig, die Konzepte aus der Numerik
und aus dem Software-Engineering, die für die Performance und Skalierbarkeit von
HHG entscheidend sind, zu erhalten. Die Arbeit beschreibt, wie die Algorithmen
und Datenstrukturen erweitert wurden, um dieses Ziel zu erreichen.

Eine weitere Methode zur Optimierung von Mehrgittermethoden wurde in Zusam-
menarbeit mit Thekale et al. entwickelt [47]. Mit einer Branch-And-Bound-Suche
wird die Verteilung von V-Zyklen im Full-Multigrid-Algorithmus optimiert. V-Zyklen
werden gezielt auf den Leveln ausgeführt, wo sie das beste Verhältnis aus Fehler-
reduktion und Kosten erzielen. Mit dieser Methode wurde in einem realistischen
Szenario eine Verringerung der Laufzeit von Full Multigrid um 35% erreicht.

www.manaraa.com

www.manaraa.com

Acknowledgments

I would like to thank my colleagues, friends, and family, who accompanied me dur-
ing my studies and the work for this thesis. You supported me in all kinds of ways,
scientifically and personally, critically and encouragingly, and all these aspects were
important. I am particularly grateful to my advisor Prof. Dr. Ulrich Rüde for giv-
ing me the chance to work in his research group and for continuously supporting
me throughout the rather long phase of my research. I also wish to thank Erich
Strohmaier and his research group, who hosted me during my stay at Lawrence
Berkeley National Laborartory.

My research was funded partly by the Elite Network of Bavaria, the Friedrich-Alex-
ander University Erlangen-Nürnberg, and the Distributed European Infrastructure
for Supercomputing Applications (DEISA) project.

Tobias Gradl

www.manaraa.com

www.manaraa.com

Contents

1 Introduction 1

2 Basics 3
2.1 The model problem . 3
2.2 Finite element methods . 5

2.2.1 Introduction . 5
2.2.2 Numerical quadrature . 5
2.2.3 Integrals over non-trivial domains 6
2.2.4 The weak form of a PDE . 7
2.2.5 Other boundary conditions . 10
2.2.6 The Galerkin method with polynomial basis functions 11
2.2.7 Assembling the linear system . 14

2.3 Multigrid methods . 18
2.3.1 Introduction . 18
2.3.2 Multigrid building blocks . 20
2.3.3 Types of multigrid cycles . 27
2.3.4 The full approximation scheme 30
2.3.5 Convergence and computational complexity 33

2.4 Hierarchical Hybrid Grids . 38
2.4.1 Concepts . 39
2.4.2 Primitives and data structures . 42
2.4.3 Programming languages and standards 43
2.4.4 Software architecture . 44
2.4.5 Changes implemented within the scope of this thesis 55
2.4.6 Usage example . 55

3 Towards petaflop performance 59
3.1 Introduction . 59
3.2 Software engineering . 60

3.2.1 Available build systems . 61
3.2.2 Adapting SCons for HHG . 61

3.3 Performance analysis . 64
3.3.1 State of the art . 65
3.3.2 HHG’s performance analysis toolkit 66

3.4 Performance of HHG on different architectures 69
3.4.1 Architectures . 69
3.4.2 Measurement setup for scaling tests 72
3.4.3 Results . 75

i

www.manaraa.com

CONTENTS

4 Adaptive mesh refinement 79
4.1 Introduction . 79
4.2 Refinement techniques . 80
4.3 Full multigrid on meshes with hanging nodes 82

4.3.1 The basic algorithm . 85
4.3.2 The improved algorithm . 93
4.3.3 The final algorithm . 96

4.4 An efficient adaptive refinement algorithm 102
4.4.1 Error estimation . 102
4.4.2 Mesh refinement . 102

4.5 Implementation in HHG . 116
4.5.1 The adaptive refinement algorithm 116
4.5.2 Data structures for the refinement boundary 119
4.5.3 The adaptive full multigrid algorithm 122

4.6 Numerical results . 126
4.6.1 Model problems and geometries 126
4.6.2 Expected results . 128
4.6.3 Observed results . 129

5 Optimization of multigrid cycles 137
5.1 An error and cost model for the full multigrid algorithm 138
5.2 Branch and bound optimization . 141
5.3 Integrating model extensions into the optimization 144
5.4 Implementation . 147
5.5 Examples . 148

5.5.1 Theoretical examples . 148
5.5.2 Optimization of an HHG full multigrid run 149

5.6 Further model extensions and related work 150

6 Conclusion 153

A The complete adaptive refinement algorithm 155

ii

www.manaraa.com

Chapter 1

Introduction

Centuries ago, scientists already used numerical algorithms to predict physical phe-
nomena quite precisely. In 1801, for example, Carl Friedrich Gauss employed the
method of least squares to predict the position of the dwarf planet Ceres. Centuries
later, there are still phenomena, for example, earthquakes, that even the most ad-
vanced computer simulations are not able to predict with sufficient accuracy. The
difficulty of simulating a physical phenomenon depends on many factors. Among
the most important ones are the scale of the simulated domain, the type and the
complexity of the physical interactions, and the time scale that has to be resolved.
This variety in the problems’ characteristics has naturally lead to a variety of meth-
ods for solving them.

A certain group of problems, for which no feasible solution methods are avail-
able, so far, is characterized by a combination of two extremes: a large domain and
a high resolution. For example, the physical interactions that need to be simulated
may take place on small scales, but, on the other hand, extend over large dimen-
sions. Certain types of acoustics simulations belong to this group. The direct simula-
tion of sound propagation, which is based on computing the air pressure differences
induced by the sound waves, requires a spatial resolution in the sub-millimeter range
in order to resolve the full range of audible frequencies. On the other hand, sound
propagates over large distances. In order to simulate the acoustics of, for example, a
concert hall, a volume of some thousand cubic meters has to be covered. This means
that the sound pressure has to be computed at around 1012 points in space.

At the same time, the domains under consideration—like the concert hall—are
often not regular, but have objects in the interior and boundaries with small details
that the simulation needs to resolve. This is another pair of extremes: large homoge-
neous areas with no relevant geometric features are contrasted by areas with small
details that nevertheless influence the result of the simulation. A similar situation is
created by irregularities of the simulated phenomena, for example, by vortices in a
flow or by discontinuities that are induced by the combination of different materials.
In order to solve such problems with feasible effort, the solver needs to adapt to the
problem by concentrating the computational effort where the irregularities occur.

This thesis discusses numerical methods, and their implementations, that are
tailored to this group of problems. They combine adaptivity with the capability to
perform extremely large-scale simulations. The basis is the finite element method,
a discretization technique that is especially suited for irregular physical domains.
As part of this process, adaptive mesh refinement is employed in order to adapt the

1

www.manaraa.com

CHAPTER 1. INTRODUCTION

mesh to the problem’s irregularities. For solving the resulting sparse, linear system
of equations, the usage of multigrid methods ensures high performance on current
computer architectures and scalability to extremely large simulations. A parallel im-
plementation opens up the access to state of the art, massively parallel supercom-
puters.

Benjamin Karl Bergen presented an implementation of this approach and scala-
bility studies for up to 1024 processors in his dissertation [10]. The implementation
was named Hierarchical Hybrid Grids (HHG). Björn Gmeiner presented applications
of HHG and scalability studies up to the Petaflops range in his dissertation [18]. So
far, one of the main restrictions of HHG was the missing adaptivity. This disserta-
tion presents the theory and the implementation of adaptive mesh refinement with
HHG.

The following chapter provides introductory information about finite element
methods, multigrid methods, and HHG, that are required as a basis for the remain-
der of the thesis. Chapter 3 presents the results of scalability experiments conducted
on various supercomputers. Chapter 4 discusses the concept of adaptive mesh re-
finement and how it is implemented in HHG. A completely different way of adapting
the multigrid algorithm to the problem’s characteristics is to adaptively distribute
the computational effort between the different phases of the solver. This approach
is presented in Chapter 5.

2

www.manaraa.com

Chapter 2

Basics

Contents
2.1 The model problem . 3

2.2 Finite element methods . 5

2.2.1 Introduction . 5

2.2.2 Numerical quadrature . 5

2.2.3 Integrals over non-trivial domains 6

2.2.4 The weak form of a PDE . 7

2.2.5 Other boundary conditions . 10

2.2.6 The Galerkin method with polynomial basis functions 11

2.2.7 Assembling the linear system 14

2.3 Multigrid methods . 18

2.3.1 Introduction . 18

2.3.2 Multigrid building blocks . 20

2.3.3 Types of multigrid cycles . 27

2.3.4 The full approximation scheme 30

2.3.5 Convergence and computational complexity 33

2.4 Hierarchical Hybrid Grids . 38

2.4.1 Concepts . 39

2.4.2 Primitives and data structures 42

2.4.3 Programming languages and standards 43

2.4.4 Software architecture . 44

2.4.5 Changes implemented within the scope of this thesis 55

2.4.6 Usage example . 55

2.1 The model problem

Most chapters of this thesis refer to a common model problem. The intent of this
thesis is to present novel methods that are generally useful for improving the perfor-
mance of multigrid finite element solvers. The intent is not to present a solver that
is tailored to a specific problem. Therefore, we select a model problem that can be
handled without complications both by the finite element method and the multigrid

3

www.manaraa.com

CHAPTER 2. BASICS

method. The advantage is that lengthy elaborations of special cases can be avoided
and the discussion can focus on the details of the new algorithms and their imple-
mentation.

Our model problem

Au = f

is Poisson’s equation, a linear, elliptic partial differential equation (PDE) with the
scalar variable u. The differential operator A is the scaled Laplace operator

−µ∆ ≡ −µ∂
2

∂x
:Rd 7→R .

The Laplace operator is a second-order differential operator. the scaling factor µ is a
positive real number.

The equation is defined on the d-dimensional, simply-connected, open domain

Ω ∈Rd

with the boundary Γ. The boundary is not considered part of the domain; the do-
main including its boundary is denoted with

Ω=Ω∪Γ .

Dirichlet and Neumann boundary conditions are considered:

Γ= ΓD ∪ΓN , ΓD ∩ΓN =; .

On the Dirichlet boundary ΓD the solution is defined by the function

g :Rd 7→R .

On the Neumann boundary ΓN the derivative along the normal vector of the bound-
ary is defined by the function

h :Rd−1 7→R , h(x) = ∂ f

∂n
(x) ,

where ∂/∂n is the normal derivative, which is defined as

∂ f

∂n
(x) = ∇ f (x) ·n(x)

with n(x) being the outward-pointing normal vector of Γ at x.
This completes our model problem:

−µ∆u = f in Ω

u = g on ΓD

µ
∂u

∂n
= h on ΓN .

(2.1)

HHG operates on three-dimensional domains (d = 3). In some explanations and
examples d = 1 or 2 are used for simplicity.

Poisson’s equation is quite an easy problem for numerical methods—disregard-
ing possible complications caused by special characteristics of Ω or f . Finite ele-
ment and multigrid methods have also been applied to harder problems, though,
e. g., with nonlinear [48, Chapter 5.3] or non-elliptic differential operators [48, Chap-
ter 5.1], other boundary conditions [44], and on unbounded domains [38]. Applying
the methods presented in this thesis to such problems is an interesting topic for fu-
ture research.

4

www.manaraa.com

2.2. FINITE ELEMENT METHODS

2.2 Finite element methods

2.2.1 Introduction

For many important differential equations—like the Navier-Stokes equations for in-
compressible flows—an analytic solution is not known. Therefore, numerical meth-
ods have been developed in order to get at least a good approximation to the equa-
tion’s solution. One of them is the finite element method. Nowadays, most readers
will know these methods as computer programs, but numerical mathematics does
not depend on the availability of machines doing the computations. With enough
computing power in the form of people with pencil and paper at hand, they can be,
and in fact have been, powerful tools for solving differential equations.

In contrast to other numerical methods for solving PDEs, the finite element meth-
od is suited especially well for irregularly-shaped domains. While for many other
methods even an L-shaped or circular domain already poses a difficult problem to
the modeler and implementer of the method, the finite element method can natu-
rally deal with complex shapes like airplane wings, cars, or the earth’s continents.

Because of its flexibility in adapting to complex geometries the finite element
method is often the first choice in mechanical engineering applications. The meth-
od also has many options for tuning it towards an application’s specific needs. Mak-
ing trade-offs between precision and time to solution—even spatially adapting these
parameters—is easily possible without complicating the method. Due to this fea-
ture, both large and accurate numerical simulations can be implemented without
expert knowledge in numerical mathematics. A result of these properties is a va-
riety of computer programs offering user-friendly, stable, and efficient solvers for
mechanical engineering and other simulations.

Somewhat more disputed is the question whether the finite element method is
suited well for parallel computing. Undoubtedly, there are methods, like the finite
difference method, for which it is easier to create parallel implementations. How-
ever, the advantages listed above justify the additional effort. And, as Chapter 3 will
show, with proper software engineering the implementation of a parallel finite ele-
ment solver with good performance is possible.

2.2.2 Numerical quadrature

In order to integrate a function analytically, it is necessary to calculate the func-
tion’s primitive. Since that is not possible in general, various numerical methods
for computing integrals approximately have been developed. These techniques are
subsumed under the term numerical quadrature. The quadrature methods used in
HHG approximate the integral of a function f (x) by replacing it with a weighted sum
of function values at certain quadrature nodes xi .

∫
Ω

f (x)dΩ ≈
N∑

i=1
wi f (xi) (2.2)

There is a variety of rules on choosing the wi . For a numerical quadrature rule
to be useful in practice, it is necessary that its approximation error is bounded and
that it can be estimated. Simpson’s rule [45, p. 203], for example, is known to inte-
grate polynomials of third degree exactly. Shaidurov has collected a wide variety of

5

www.manaraa.com

CHAPTER 2. BASICS

x0

x1

x3

x2
x4

Figure 2.1: A tetrahedron with quadrature nodes.

Table 2.1: Shaidurov’s quadrature rule for tetrahedra. The quadrature nodes are
given in barycentric coordinates.

node λ0 λ1 λ2 λ3 weight

x0 1 0 0 0 1
120

x1 0 1 0 0 1
120

x2 0 0 1 0 1
120

x3 0 0 0 1 1
120

x4
1
4

1
4

1
4

1
4

2
15

quadrature rules and their error estimations for one-, two-, and three-dimensional
functions in [41].

None of these rules can be applied to arbitrary domains Ω, though. A rule’s ap-
proximation error can only be estimated with reasonable bounds, if Ω has a well-
defined shape. Thus, the three defining criteria for every rule are

• the shape ofΩ,

• the locations of the quadrature nodes xi , and

• the weights wi at these points.

HHG currently includes quadrature rules for tetrahedra. A tetrahedron is a vol-
ume enclosed by four triangular faces (see Fig. 2.1). Every tetrahedron has six edges
and four vertices. Shaidurov’s quadrature rule for tetrahedra, which is used in HHG,
defines five quadrature nodes. In Table 2.1 the coordinates of these nodes (x0, . . . , x4)
are given in the barycentric coordinate system defined by the tetrahedron’s vertices.
One node is located at each vertex and one inside the volume. The table also assigns
a weight wi to each of the nodes. The weight is 1/120 for the nodes at the tetrahe-
dron’s vertices and 2/15 for the node in the center. This quadrature rule integrates
polynomials of degree two exactly

2.2.3 Integrals over non-trivial domains

Quadrature rules for which error bounds can be given are only available for a lim-
ited set of rather simple geometric shapes. For more complicated shapes, usable

6

www.manaraa.com

2.2. FINITE ELEMENT METHODS

Ω
Ωi

Figure 2.2: Partitioning of a two-dimensional domainΩ into subdomainsΩi .

quadrature rules could be developed, too, but at a high effort. For arbitrarily shaped
domains, however, it is not possible at all to state a usable quadrature rule.

One of the central ideas of the finite element method comes into play at this
point. In order to integrate a function over arbitrarily shaped domains, the method
makes use of the linearity of the integral operator:∫

Ω
f dΩ = ∑

i

∫
Ωi

f dΩi where Ω=⋃
i
Ωi

and Ωi ∩Ω j =; for all i 6= j .

(2.3)

An integral over an irregularly-shaped domain Ω can thus be calculated as the sum
of integrals over subdomains Ωi that have simpler shapes, for which the integral
can be calculated—analytically or numerically. An example for the partitioning of a
two-dimensional domain Ω is shown in Fig. 2.2. Such a partitioning will be called
finite element mesh with the subdomainsΩi representing the finite elements.

The above example already shows some interesting aspects of this technique.
First, finite elements mostly—in this thesis: always—have non-curved boundaries,
although elements with curved boundaries have successfully been used for special
applications [3, p. 207]. The reason for preferring non-curved elements is that these
are the easiest ones to integrate over.

The major drawback of these elements is also visible in the figure. Using only el-
ements with non-curved boundaries, it is harder to approximate irregularly-shaped
domains with curved boundaries. The areas of Ω that are not padded with sub-
domains are highlighted in gray in Fig. 2.2. However, the same problem exists for
elements with curved boundaries, although possibly to a smaller degree, depending
on the shape of Ω. In general, one has to accept that the finite element method’s
domain partitioning introduces modeling errors of this kind.

Among the rectilinear elements, the different types of elements have their ad-
vantages in different situations. In Fig. 2.2 rectangular elements are used to fill large
parts of the domain with only a few elements. The triangular elements, in contrast,
are better for approximating the domain’s curved boundary.

2.2.4 The weak form of a PDE

How does being able to integrate over arbitrary domains help us solving PDEs on
these domains? The second central idea of the finite element method is to transform
the PDE into a form with integrals. In the following paragraphs we show the steps
involved in the transformation. After that, we need to show that the solution of the
transformed equation is also a solution of the original PDE.

7

www.manaraa.com

CHAPTER 2. BASICS

Recall our model problem (2.1). For the moment, we assume that the problem
has only homogeneous Dirichlet boundary conditions:

−µ∆u = f in Ω

u = 0 on Γ .
(2.4)

Section 2.2.5 will show how to deal with Neumann and inhomogeneous boundary
conditions.

Let us assume that we are satisfied with a solution u that fulfills this PDE “on
average”. Then we may compute such a weighted average by multiplying the PDE
with a weighting function v defined inΩ, and integrating:

−
∫
Ω
µ∆uv =

∫
Ω

f v . (2.5)

The weighting function v is known as test function, because its purpose is to test
whether u fulfills the PDE on average.

If arbitrary functions v were admitted, (2.5) would hold for any function u, and
the equation would not be very useful for our purposes. On the other hand, it is
possible to select an appropriate function space for v such that every u that fulfills
(2.5) also fulfills (2.4). Provided that f is continuous, any function u solving (2.4), as
well as its partial derivatives up to order two, must be continuous onΩ, and u must
be 0 on Γ. These properties are collected in the definition of the subspace

C 2
D (Ω) =

{
u ∈C 2(Ω) : u = 0 on Γ

}
,

where C 2(Ω) is the space of twice continuously differentiable functions defined in
Ω. It is sufficient to also consider only this space for choosing the test functions. In
fact, any u ∈ C 2

D is a solution of (2.5) for all v ∈ C 2
D , if and only if u is a solution of

(2.4). For a detailed proof of this theorem, see [22], page 20. Its basic idea is that C 2
D

contains functions v that are greater than 0 only in a ball with radius δ around a
point x0 and have a total weight of 1 (i. e., their integral over the ball evaluates to 1).
Using these functions for v , the integrals in (2.5) are weighted averages ofµ∆u and f
over the ball. Letting δ→ 0 at all points x0 ∈Ω drives the weighted averages towards
the original values of (2.4).

Compared to the original PDE, the integral form has weaker restrictions on the
right-hand side. While (2.4) requires f to be continuous over Ω, in (2.5) it is only
necessary that f v is integrable over Ω. The PDE can be relaxed even further using
Green’s identity, also known as Gauss’s theorem,

−
∫
Ω
∆uv =

∫
Ω
∇v ·∇u −

∫
Γ

v
∂u

∂n
.

For a proof of Green’s identity see [22], page 17. When taking v from C 2
D (Ω), the

boundary integral in Green’s identity vanishes, because v = 0 on Γ. Thus, applying
Green’s identity to (2.5) yields∫

Ω
µ∇u ·∇v =

∫
Ω

f v . (2.6)

With this transformation the requirements on the solution have been relaxed
considerably. While u has to be twice differentiable in (2.4), only first derivatives of

8

www.manaraa.com

2.2. FINITE ELEMENT METHODS

u and v are required in (2.6). This change motivates a re-analysis of the function
spaces used for solving the PDE.

First of all, note that the weighted average of a partial derivative ∂u/∂x can be
transformed with Green’s identity:∫

Ω

∂u

∂x
v = −

∫
Ω

u
∂v

∂x
for all v ∈C∞

D (Ω) .

In this context ∂u/∂x is called weak partial derivative of u (the notation is the same
as for strong derivatives). If such a weak derivative exists, u is said to be weakly dif-
ferentiable.

Equation (2.6) contains two weak derivatives, ∇u and ∇v , in an integral. For the
possibility that u = v the squared weak derivatives are required to be integrable, i. e.,∫

Ω

(
∂u

∂xi

)2

<∞ for all i = 1, . . . , N .

The same argument applies for the right-hand side of (2.6). If f = v , then f and v
must be square-integrable.

These requirements are gathered into the definition of the Hilbert spaces

H 1(Ω) =
{

u ∈ L2(Ω) :
∂u

∂xi
∈ L2(Ω)

}
and

H 1
D (Ω) = {

u ∈ H 1(Ω) and u = 0 on Γ
}

,

where

L2(Ω) =
{

u :Ω→R :
∫
Ω

u2 <∞
}

.

Now we can write the weak form of (2.4) as

Find u ∈ H 1
D (Ω) such that∫

Ω
µ∇u ·∇v =

∫
Ω

f v for all v ∈ H 1
D (Ω),

where f ∈ L2(Ω) .

(2.7)

The formulation carries that name because it imposes weaker requirements on so-
lution and right-hand side than the original PDE. Summarizing, the PDE has been
relaxed in two ways:

• u need not be twice differentiable inΩ, but only once weakly differentiable in
Ω.

• f need not be continuous over Ω. It is sufficient that f is square-integrable
overΩ and f v is integrable overΩ.

For convenience, we will also use a more concise notation of the weak form,

a(u, v) = `(v) , (2.8)

with the symmetric bilinear form

a(u, v) =
∫
Ω
µ∇u ·∇v

and the linear functional

`(v) =
∫
Ω

f v .

9

www.manaraa.com

CHAPTER 2. BASICS

2.2.5 Other boundary conditions

The derivation of the weak form up to here assumed that the model problem has
only homogeneous Dirichlet boundary conditions. We now analyze which changes
have to be made in order to also support other boundary conditions.

Inhomogeneous Dirichlet boundary conditions

The model problem with inhomogeneous Dirichlet boundary conditions is

−µ∆u = f inΩ

u = g on Γ .
(2.9)

In the previous section, homogeneous Dirichlet boundary conditions were im-
posed by choosing the function space H 1

D (Ω). The approach to define a similar func-
tion space that includes the inhomogeneous Dirichlet boundary conditions would
not be promising. Therefore, g has to be integrated into the weak form in a different
way. In order to reuse the space H 1

D (Ω), u has to be replaced with a function that is
0 on Γ. This is achieved by using the functions

G ∈ H 1(Ω) with G = g on Γ and

w = u −G

to derive the weak form in the following steps:

−
∫
Ω

u∆(w +G)v =
∫
Ω

f v

⇒
∫
Ω
µ∇v ·∇(w +G)−

∫
Γ
µv

∂(w +G)

∂n
=

∫
Ω

f v

⇒
∫
Ω
µ∇v ·∇w +

∫
Ω
µ∇v ·∇G =

∫
Ω

f v .

Thus, the weak form of (2.9) is:

Find u = w +G , w ∈ H 1
D (Ω) such that∫

Ω
µ∇w ·∇v =

∫
Ω

f v −
∫
Ω
µ∇v ·∇G for all v ∈ H 1

D (Ω),

where f ∈ L2(Ω) , G ∈ H 1(Ω) , and G = g on Γ .

(2.10)

Neumann boundary conditions

Homogeneous Neumann boundary conditions impose that there be no flux for u
across the boundary. The Neumann problem is thus formulated as

−µ∆u = f inΩ

∂u

∂n
= 0 on Γ .

(2.11)

For deriving a weak form that includes these boundary conditions, we apply the
same transformations as in the previous section. Since the solution is not necessarily

10

www.manaraa.com

2.2. FINITE ELEMENT METHODS

zero on the boundary, any more, we use H 1(Ω) instead of H 1
D (Ω) for u and v .

−
∫
Ω
µ∆uv =

∫
Ω

f v for all v ∈ H 1(Ω)

⇒
∫
Ω
µ∇v ·∇u =

∫
Ω

f v +
∫
Γ

v
∂u

∂n
for all v ∈ H 1(Ω)

⇒
∫
Ω
µ∇v ·∇u =

∫
Ω

f v for all v ∈ H 1(Ω) (2.12)

While in the previous section the boundary integral vanished because v = 0 on Γ, it
now vanishes due to the homogeneous Neumann boundary conditions.

While it was straightforward to derive the weak from the strong form, proofing
the converse argument ((2.12) ⇒ (2.11)) requires additional thought, because the
function space changed (see [22], page 30). In fact, for the argument to hold, addi-
tional smoothness beyond H 1(Ω) is required for u. The solution must be smooth
enough that

• Green’s identity applies, and

• ∇u can be restricted to Γ, so ∂u/∂n can be computed.

While the Dirichlet boundary conditions must be imposed explicitly (by select-
ing the function space H 1

D (Ω)), the homogeneous Neumann boundary conditions
are automatically fulfilled in the finite element method. Due to this property they
are also known as natural boundary conditions.

Inhomogeneous Neumann boundary conditions are described by

∂u

∂n
= h on ΓN .

For these boundary conditions, deriving the weak form is straightforward. The
only change is that the boundary integral does not vanish, any more:

−
∫
Ω
µ∆uv =

∫
Ω

f v

⇒
∫
Ω
µ∇v ·∇u =

∫
Ω

f v +
∫
Γ

v
∂u

∂n

⇒
∫
Ω
µ∇v ·∇u =

∫
Ω

f v +
∫
ΓN

hv . (2.13)

2.2.6 The Galerkin method with polynomial basis functions

Recall that our main goal of deriving the weak form (2.7) was not to relax the re-
quirements on the involved functions, but to open the gate towards a new solution
method that employs our ability to efficiently compute integrals over non-trivial do-
mains. The Galerkin method closes the gap from the weak form to the domain par-
titioning technique described in Section 2.2.3 by using a clever choice of local basis
functions.

The boundary value problem (2.7) cannot be tackled easily and efficiently with
computer programs, because the space H 1(Ω) is infinite-dimensional. Therefore,
the Galerkin method computes uh , an approximation to u in a finite-dimensional
sub-space V h ⊂ H 1(Ω). The projection theorem claims that the computed approxi-
mation is the best approximation to u in V h . For a proof, see [22], page 57.

11

www.manaraa.com

CHAPTER 2. BASICS

Since V h is finite-dimensional, it is spanned by a finite number of basis vectors
w1, . . . , wN . As any other vector in V h , the approximation to u can be written as a
linear combination of the basis vectors:

uh =
N∑

i=1
uh

i wi with uh
i ∈R . (2.14)

Let uh be an approximation to u in V h . Then we want to compute the solution of
the discrete weak form

a(uh , v) = `(v) for all v ∈V h .

If the discrete form holds for all basis vectors wi of V h , then it also holds for all other
vectors v ∈V h , because a(·, ·) and `(·) are bilinear and linear, respectively. Therefore,
we only need to solve the system of N equations

a(uh , wi) = `(wi) , i = 1, . . . , N . (2.15)

Inserting (2.14) into (2.15) and reordering the terms yields∫
Ω
µ∇

N∑
j=1

(uh
j w j) ·∇wi =

∫
Ω

f wi , i = 1, . . . , N

⇔
N∑

j=1

(
uh

j

∫
Ω
µ∇w j ·∇wi

)
=

∫
Ω

f wi , i = 1, . . . , N .

This is an N -dimensional linear system of equations

Auh = F (2.16)

with the stiffness matrix

A = {
ai j

}N
i , j=1 , where ai j =

∫
Ω
µ∇w j ·∇wi ,

the vector of unknowns

uh = {
uh

i

}N
i=1 ,

and the load vector

F = {
fi

}N
i=1 , where fi =

∫
Ω

f wi .

The names “stiffness matrix” and “load vector” originate from the domain of me-
chanical engineering. In the PDE that models the deformation of an object under
a certain load the parameter µ is characteristic for the material’s stiffness and the
right-hand side f describes the external forces that impose the load on the object.

Polynomial basis functions

The Galerkin method itself does not define which subspace V h and which basis
functions wi are to be used. The final ingredient for the finite element method is

12

www.manaraa.com

2.2. FINITE ELEMENT METHODS

a subspace of basis functions with compact support. A function is compactly sup-
ported, if it is zero everywhere but in a closed, bounded subdomain of Ω. The ad-
vantage of such basis functions in the linear system of equations (2.16) becomes
clear when looking at the entries of the stiffness matrix,

ai j =
∫
Ω
µ∇w j ·∇wi ,

Since ∇wi = 0 in most parts where wi = 0, i. e., outside the compact subdomain,
the inner product ∇w j · ∇wi vanishes for most combinations of i and j , and the
corresponding matrix entries ai j are zero. Thus, the matrix A is sparse, and the linear
system can be solved efficiently using iterative methods, e. g., multigrid.

Even when restricting the selection of basis functions to the compactly sup-
ported ones, there are still a lot of choices. Polynomials, trigonometric functions,
exponential functions, etc.; there is not much that has not been tried. Within the
scope of this work we restrict ourselves to the class of polynomial functions, because
they are well-suited for approximating the smooth functions of our model problems.

A polynomial in the two-dimensional vector space R2 is a function

f : (x, y) ∈R2 → a00 +a10x +a01 y +a11x y +a20x2 + . . .+ann xn yn

with constant parameters ai j ∈ R. For a polynomial in R3 the scheme is expanded
analogously by a third coordinate z.

For deciding which basis functions shall construct the space V h it is usually
advantageous to consider the characteristics of the problem that has to be solved,
which means going from the abstract notion of function spaces that the Galerkin
method is based on back to the real domain of the problem. For a physics simula-
tion in 3D it makes sense to construct V h such that it suits the characteristics of the
domain of interest, or, in other words, such that the error caused by the approxima-
tion is as small as possible. A natural choice for the approximation is a finite element
mesh as described in Section 2.2.3.

A finite element mesh is a partitioning ofΩ into a set of open, bounded, polygo-
nal (in 2D) or polyhedral (in 3D) sub-domains Eκ, κ= 1, . . . , NE , where NE is the total
number of finite elements in Ω. The term finite element refers to Eκ, i. e., the sub-
domain including its closure. An element’s closure is defined by its corners, called
nodes, which will be denoted by n(κ)

i , i = 1, . . . , N (κ). The number of nodes N (κ) of

element Eκ is specific to the its type. For example, for triangles N (κ) = 3, for quadri-
laterals and tetrahedrons N (κ) = 4.

To simplify the following computations, we only consider conforming meshes
for now. In Chapter 4 we will also encounter non-conforming meshes as a result of
adaptive mesh refinement. Fig. 2.3 illustrates the following definition of a conform-
ing mesh.

Definition 1. Let the term edge denote the line e between two nodes n(κ)
i and n(κ)

j ,

i 6= j , of element Eκ. A finite element mesh is conforming, if and only if for all elements

Eλ with e ∩Eλ 6= ; , λ= 1, . . . , NE

the line e is an edge between two nodes n(λ)
i and n(λ)

j , i 6= j .

The overall number of nodes in the mesh will be denoted by N , and the nodes,
from a global point of view, will be denoted by ni , i = 1, . . . , N . Besides the number of

13

www.manaraa.com

CHAPTER 2. BASICS

Figure 2.3: A conforming (left) and a non-conforming (right) finite element mesh.

elements in the mesh also the layout of the elements influences the overall number
of mesh nodes. Thus, N is generally not uniquely determined by the N (κ). However,
one can construct a unique mapping from local to global nodes

m : (κ, i) → j : n j = n(κ)
i for all κ= 1, . . . , NE , i = 1, . . . , N (κ) ,

such that j ∈ {1, . . . , N } .
(2.17)

The mapping is generally not reversible, because a node is usually within the closure
of several elements.

It is not a coincidence that the variable name N used for the number of nodes
here was already used earlier in this section for the number of basis vectors in V h .
We now associate a basis vector with each of the nodes. Each basis vector wi is given
by a corresponding basis function φi that shall have the following properties.

• φi is piecewise polynomial. The restriction of φi to any element Eκ is polyno-
mial.

• φi is 1 on its corresponding node and 0 on all other nodes:

φi (n j) = δi j =
{

1, if i = j

0, if i 6= j
, i , j = 1, . . . , N .

• φi is linear along every edge.

The restriction of a basis function to an element is called local basis function and is
defined as

φ(κ)
i (x) = φm(κ,i)(x) for x ∈ Eκ and i = 1, . . . , N (κ) ,

where m is the mapping defined in (2.17).

2.2.7 Assembling the linear system

For assembling the linear system (2.16) the entries of the stiffness matrix and the
load vector,

ai j =
∫
Ω
µ∇φi ·∇φ j and fi =

∫
Ω

f φi for i , j = 1, . . . , N ,

have to be computed. Since we have a finite element mesh now, we can apply (2.3)
to compute the integrals as the sum of integrals over individual elements:

ai j =
NE∑
κ=1

∫
Eκ
µ∇φi ·∇φ j and fi =

NE∑
κ=1

∫
Eκ

f φi for i , j = 1, . . . , N .

14

www.manaraa.com

2.2. FINITE ELEMENT METHODS

At this point some of the properties required above for the basis functions come in
handy. Since φi (n j) = δi j , both φi and ∇φi are non-zero only in elements which
have the node ni in their closure. Consequently, the integrals for ai j and fi evaluate
to zero in all other elements. Thus, the global basis functions can be substituted with
the elements’ local basis functions in the integrals:

ai j =
NE∑
κ=1

∫
Eκ
µ∇φi ·∇φ j =

NE∑
κ=1

∫
Eκ
µ∇φ(κ)

k ·∇φ(κ)
l (2.18)

and fi =
NE∑
κ=1

∫
Eκ

f φi =
NE∑
κ=1

∫
Eκ

f φ(κ)
k (2.19)

for i , j = 1, . . . , N , k, l = 1, . . . , N (κ) .

Reference elements

Computing these integrals for every element would still be too expensive in practice.
The number of times some of the functions have to be evaluated can be diminished
by employing the concept of reference elements. For every element type we can de-
fine a reference element that can be mapped to all other elements of this type.

Fig. 2.4 shows the mapping between a reference triangle TR and a triangle Eκ in
the finite element mesh. TR and Eκ are defined by the nodes ti and z(κ)

i , respectively,
where

t1 = (0,0) , z(κ)
1 = (x(κ)

1 , y (κ)
1) ,

t2 = (1,0) , z(κ)
2 = (x(κ)

2 , y (κ)
2) ,

t3 = (0,1) , z(κ)
3 = (x(κ)

3 , y (κ)
3) .

The term Ẽκ will generally denote the reference element of Eκ, although many of
the Ẽκ will refer to the same reference element. For all triangular elements Eκ, for

example, Ẽκ = TR . Points in Ẽκ are mapped uniquely to points in Eκ and vice versa
by the affine functions τ(κ) and χ(κ):

z ∈ Eκ = τ(κ)(t) = z(κ)
1 + Jκt , t ∈ Ẽκ .

t ∈ Ẽκ =χ(κ)(z) = J−1
κ

(
z − z(κ)

1

)
, z ∈ Eκ .

The matrix jκ is the Jacobian matrix of τ(κ). For triangles it evaluates to

Jκ =
(

x(κ)
2 −x(κ)

1 x(κ)
3 −x(κ)

1
y (κ)

2 − y (κ)
1 y (κ)

3 − y (κ)
1

)
.

The concept of reference elements has been shown for the simple case of the tri-
angle. However, it is applicable to all element types for which transformations τ and
χ can be constructed. The general form of the Jacobian matrix of a transformation
in d dimensions is

Jκ =

∂τ(κ)

1 (t)
∂r1

. . .
∂τ(κ)

1 (t)
∂rd

...
. . .

∂τ(κ)
d (t)
∂r1

∂τ(κ)
d (t)
∂rd

 , (2.20)

15

www.manaraa.com

CHAPTER 2. BASICS

0 1 r

1

s

0 1 x

1

y
z(κ)

3 = (x(κ)
3 , y (κ)

3)

z(κ)
1 = (x(κ)

1 , y (κ)
1)

TR

Eκ

z(κ)
2 =

(x(κ)
2 , y (κ)

2)

t = (r, s)

z(κ) = (x(κ), y (κ))
τ(κ)

t3

t2t1

χ(κ)

Figure 2.4: Reference triangle and coordinate mapping.

where the ri are the components of the d-dimensional vector t = (r1, . . . ,rd)T .

We are especially interested in element types for which affine transformations
exist. These have a Jacobian matrix that is constant in t , which allows for the effi-
cient computation of the integrals (2.18) and (2.19) on the reference elements, as we
will see below. Besides the triangle, also the other elements used in HHG—the quad-
rilateral, the tetrahedron and the cuboid—have this property. General quadrilaterals
and general hexahedra can not be mapped to the reference square or the reference
cube, respectively, by affine transformations. This is one reason why these element
types are not supported in HHG.

For every basis function φ(κ)
i the corresponding basis function on the reference

element is φ̃(κ)
i with

φ̃(κ)
i (t) = φ(κ)

i (z)

⇔ φ̃(κ)
i (t) = φ(κ)

i (τ(κ)(t))

⇔ φ(κ)
i (z) = φ̃(κ)

i (χ(κ)(z))

(2.21)

Note that for two different elements of the same type, Eκ and Eλ, which naturally
have different basis functions φ(κ)

i 6= φ(λ)
i , the basis functions on the reference ele-

ment are the same: φ̃(κ)
i = φ̃(λ)

i . Thus, if we replace φ(κ)
i in (2.18) and (2.19) with φ̃(κ)

i ,
we will need to perform some expensive computations only once for each element
type.

The load vector

The rule for the change of variables in an integral is given by the transformation
theorem,∫

Ω̃
a(z)d z =

∫
Ω
|det(J (b))|a(b(t))d t , (2.22)

where J (b) is the Jacobian matrix of the transformation b, and |det(J (b))| is the ab-
solute value of b’s determinant. For a proof of the transformation theorem, see [2, p.
416].

Equation (2.19) can easily be transferred into a sum of integrals over the refer-

16

www.manaraa.com

2.2. FINITE ELEMENT METHODS

ence element with (2.22), where a =φκ and b = τ(κ), and using (2.21):

fi =
NE∑
κ=1

|det(Jκ)|
∫

Ẽκ
f̃ φ̃(κ)

k , where f̃ = f (τ(κ)) ,

for i = 1, . . . , N , k = 1, . . . , N (κ) .

(2.23)

Note that |det(Jκ)| can be taken out of the integral, because it is constant over Ẽκ.
If the problem contains inhomogeneous Neumann boundary conditions, the

term ∫
ΓN

hv

in (2.13) is not zero and needs to be added to the load vector. It is an integral over a
d −1-dimensional sub-space of Ω. The steps for computing it are, in principle, the
same as for (2.23). By applying (2.3) the integral over ΓN can be split into a sum of
integrals over the boundaries of the individual elements Eκ. Like the elements, also
their boundaries can be grouped topologically into primitive types. In 3D, for exam-
ple, the boundaries of tetrahedra are triangular faces, the boundaries of hexahedra
are quadrilateral faces. Like for the elements, reference faces can be defined. Note
that the transformations τ(κ) and χ(κ) now map between spaces of different dimen-
sion: the d-dimensional space Ω and the d −1-dimensional space of the reference
faces.

The stiffness matrix

Changing the variables in (2.18) is not quite as simple, because the functions to be
transformed are inside the gradient function. The individual components of the gra-
dient vector are

∇φ(κ)
k (z) =

(
∂

∂x1
φ(κ)

k (z), . . . ,
∂

∂xd
φ(κ)

k (z)

)T

,

where z = (x1, . . . , xd)T . In order to use φ(κ)
k (z) = φ̃(κ)

k (χ(κ)(z)) from (2.21), the chain
rule for more-dimensional functions [2, p. 353] has to be applied to each component
of the gradient:

∂

∂xi
φ(κ)

k (z) = ∂

∂xi

[
φ̃(κ)

k

(
χ(κ)(z)

)] =
d∑

j=1

∂φ̃(κ)
k (t)

∂r j
·
∂χ(κ)

j (z)

∂xi
.

Analogous to the Jacobian matrix Jκ for τ(κ) in (2.20), the Jacobian matrix for the
inverse mapping χ(κ) is defined as

Kκ =

∂χ(κ)

1 (t)
∂x1

. . .
∂χ(κ)

1 (t)
∂xd

...
. . .

∂χ(κ)
d (t)
∂x1

∂χ(κ)
d (t)
∂xd

 .

Note that the terms ∂χ(κ)
j (z)/∂xi that appeared after applying the chain rule form

the i -th column of Kκ. Thus, the change of variables is achieved with

∇φ(κ)
k (z) = K T

κ ∇φ̃(κ)
k (t) ,

17

www.manaraa.com

CHAPTER 2. BASICS

and (2.18) can be transformed into a form using only integrals over the reference
elements:

ai j =
NE∑
κ=1

∫
Eκ
µ

(
K T
κ ∇φ̃(κ)

k

)
·
(
K T
κ ∇φ̃(κ)

l

)
for i , j = 1, . . . , N , k, l = 1, . . . , N (κ) .

(2.24)

A slightly different approach for changing the variables in (2.18) is to start with
φ̃(κ)

k (t) =φ(κ)
k (τ(κ)(t)) from (2.21). Transformations analogous to the ones above lead

to

∇φ(κ)
k (z) = J−T

κ ∇φ̃(κ)
k (t) ,

which shows that J−T
κ = K T

κ . The practical relevance of this finding is that for imple-
menting the finite element method one can choose between inverting the Jacobian
matrix of τ or computing the reverse mapping χ, depending on what is more conve-
nient.

Efficiency considerations

The integrals for stiffness matrix and right-hand side can now be computed effi-
ciently by numerical integration. Still, the challenge of implementing an efficient
finite element solver has only just begun.

Usually, most of the entries ai j of the stiffness matrix will be zero, because the
corresponding nodes ni and n j are not are not in the closure of the same element
and, thus, the corresponding basis functions will be zero at these nodes. Therefore,
simply iterating over all combinations of i and j is not an efficient approach to com-
pute the stiffness matrix. Instead, one rather iterates over the nodes or elements of
the mesh and computes their contributions to the stiffness matrix.

Iterating over the nodes usually causes more work than iterating over the ele-
ments. The basis function of a node also contributes to the stiffness matrix entries
of neighboring nodes—neighboring meaning here, that the nodes are in the closure
of the same element. This means, when iterating over the nodes, the gradients of
the basis functions have to be computed repeatedly—or stored, which is quite in-
convenient. Therefore it is usually better to iterate over the elements and add each
element’s contributions to the corresponding stiffness matrix entries of all nodes in
the element’s closure.

Stencil-based solvers, the group of solvers HHG belongs to, do not even build up
the stiffness matrix, at all. Instead, they store the element stiffness matrices sepa-
rately and apply them individually to a vector, with the same result as if they would
have been first assembled to a global matrix. Especially if the mesh contains many
elements with the same shape and, thus, with the same stiffness matrix, this tech-
nique is very efficient, as we will see in Chapter 3.

2.3 Multigrid methods

2.3.1 Introduction

The finite element method introduced in the previous section generates a linear sys-
tem of equations

Au = f (2.25)

18

www.manaraa.com

2.3. MULTIGRID METHODS

with n unknowns, i. e., with an n ×n matrix A and n-dimensional vectors u and f .
Depending on the geometry that has to be approximated with the finite element
mesh and the requirements on the quality of the solution, n can get very large; on
the other hand, A is usually very sparse. Various methods have been developed to
solve such systems of equations.

Two distinct groups of solvers exist: direct and iterative solvers. Direct methods
produce a solution that is exact up to the discretization accuracy after one pass of
the algorithm. A well-known representative of this group is Gaussian elimination
[45, p. 44]. Because of their robustness direct methods are popular black-box solvers
in numerical software packages. Iterative methods produce an approximation that
converges towards the exact solution by repeatedly applying an algorithm to the ap-
proximation of the previous iteration. Popular representatives of this group are the
conjugate gradient method and the Gauss-Seidel method. The multigrid methods
presented in this thesis belong to this group, too. Iterative methods have the advan-
tage of requiring, in general, less computational effort and less storage space than
the direct methods. Therefore, they are especially suited for large systems of equa-
tions. For a comparison of direct and iterative solvers, see [3], Section 7.5.

Local iterative solvers

The iterative methods can be categorized by the way information propagates in the
mesh. The Krylov subspace schemes, like the conjugate gradient method, are global
processes. That means, in each iteration the solution at one node of the mesh can
be influenced by information from all other nodes. The splitting schemes, among
them the Gauss-Seidel method, are local processes. In these schemes the solution
at a certain node is only influenced by information from neighboring nodes in each
iteration.

The splitting schemes have important advantages, which make them interesting
for large sparse systems of equations. For example, they are well suited for parallel-
ization—for the very reason that only local exchange of information and, thus, no
global communication is necessary. However, that property also gives the splitting
schemes a decisive disadvantage, which is illustrated in Fig. 2.5. The figure shows
how the Jacobi algorithm (which will be presented in the next section) typically re-
duces the error of the approximation after some iterations. For generating the plots,
the model problem (2.1) in 1D on the domain Ω = [0,1] was discretized with finite
differences at a resolution of 1/8, i. e., with 9 grid points. Homogeneous Dirichlet
boundary conditions (u(0) = 0 and u(1) = 0) and a right-hand side f = 0 were used.
Since the solution of this problem is u(x) = 0, the error after each iteration is equal to
the current approximation of the solution. The Jacobi iteration was initialized with
random values for u—see the left plot in Fig. 2.5. The middle plot shows the error
after 5 iterations, the right plot after 10 iterations. Obviously, the error is smoothed
very well within a few iterations, but after that it takes many more iterations to bring
it close to zero. This is not surprising given that the Jacobi algorithm just computes
weighted averages of nearest neighbors.

Multigrid

At this point the multigrid idea comes into play. The notion of what is a “nearest
neighbor” is entirely mesh-dependent, so, one can as well discretize the problem at
a coarser resolution (i. e., with less mesh points) and continue eliminating the error

19

www.manaraa.com

CHAPTER 2. BASICS

Figure 2.5: Jacobi error reduction. Left: initial error. Middle and right: error after 5
and 10 iterations, respectively.

on that mesh—since the error is smooth already, not much information is lost when
observing it at a coarser resolution.

2.3.2 Multigrid building blocks

Two multigrid ingredients, the smoother and the coarse mesh, were already men-
tioned in the previous section. This section describes them in more detail and intro-
duces the other parts that are necessary for building a complete multigrid algorithm.

Smoothers

The algorithms presented in the following were originally developed for solving lin-
ear systems of equations, but they often require hundreds of iterations to reduce
the error to an acceptable level. In the multigrid context, their main purpose is to
smooth the error—a task for which they are much better suited, as Fig. 2.5 already
indicated.

Algorithm 1 describes the smoother in general. The smoother operates on a lin-
ear system determined by the matrix A ∈RN×N and the right-hand side f ∈RN . The
current approximation to the solution u of the system

Au = f

is denoted with v . The number of iterations the smoother shall perform is given with
the configuration parameter ν.

Algorithm 1: The general form of the smoother.

1.1 Algorithm smooth(A, v, f , ν)
1.2 Perform ν iterations of an iterative solver with good error smoothing

properties on the linear system Av = f .
1.3 return v

The Jacobi algorithm is a simple splitting scheme that can be used as a smoother.
Given an initial approximation v to the solution, it computes an updated approxi-
mation v by solving the system’s equations independently:

Av ≈ f

⇔
N∑

j=1
Ai j v j ≈ fi for i = 1. . . N

⇒ v i = A−1
i i

(
fi −

i−1∑
j=1

Ai j v j −
N∑

j=i+1
Ai j v j

)
for i = 1. . . N .

20

www.manaraa.com

2.3. MULTIGRID METHODS

The scheme can be written in matrix form, which also explains the term splitting
scheme. Assume A is split into three matrices

• D ∈RN×N containing the diagonal entries of A,

• L ∈RN×N containing the entries below the diagonal of A, and

• U ∈RN×N containing the entries above the diagonal of A .

Then A = L+D +U and

v = D−1 (
f − (L+U)v

)
. (2.26)

Using Banach’s fix-point theorem it can be proven that this iteration converges
towards the solution of Au = f [40]. The proof is based on the fact that u is a fix point
of (2.26), i. e., inserting u for v in the equation yields u as a result. The convergence
is determined by the condition of the iteration matrix: if ||D−1(L +u)|| < 1, then the
fix-point iteration converges. This property is fulfilled for the model problem (2.1)
as long as ΓD 6= ;. The proof can be read in detail for example in .

It turns out that the convergence of the Jacobi algorithm, but also its smoothing
efficiency, can be greatly improved by applying damping to the iteration:

v = (1−ω)v + ωD−1 (
f − (L+U)v

)
.

The damped Jacobi iteration (Algorithm 2) converges for damping values 0 <ω≤ 1.
For ω= 1 it is equivalent to the undamped Jacobi iteration.

Algorithm 2: The damped Jacobi smoother.

2.1 Algorithm jacobi(A, v, f , ν, ω)
2.2 for n = 1. . .ν do
2.3 for i = 1. . . N do

2.4 v i = (1−ω)vi +ωA−1
i i

(
fi −∑i−1

j=1 Ai j v j −∑N
j=i+1 Ai j v j

)
2.5 end
2.6 end
2.7 return v

An obvious change to the Jacobi algorithm leads to the Gauss-Seidel algorithm:
instead of using only values of the old approximation for computing the new ap-
proximation, one can use new values as soon as they become available. The formula
for the individual updates is

v i = A−1
i i

(
fi −

i−1∑
j=1

Ai j v j −
N∑

j=i+1
Ai j v j

)
for i = 1. . . N ,

the matrix form is

v = D−1 (
f −Lv −U v

)
⇔ v = (D +L)−1 f − (D +L)−1U v .

(2.27)

For the Gauss-Seidel algorithm a “damping” parameter can be used, too. In this
case, a value of ω> 1 usually yields the best convergence. That is why the technique

21

www.manaraa.com

CHAPTER 2. BASICS

is called successive over-relaxation (SOR). The matrix form of the SOR algorithm is

v = (1−ω)v + ωD−1 (
f −Lv −U v

)
⇔ v = ω(D +ωL)−1 f + (D +ωL)−1 [(1−ω)D −ωU] v .

The iteration is convergent for 0 < ω < 2. For ω = 1 it is equal to the Gauss-Seidel
scheme, so Algorithm 3, although named sor, represents both schemes.

Algorithm 3: The successive over-relaxation smoother.

3.1 Algorithm sor(A, v, f , ν, ω)
3.2 for n = 1. . .ν do
3.3 for i = 1. . . N do

3.4 v i = (1−ω)vi +ωA−1
i i

(
fi −∑i−1

j=1 Ai j v j −∑N
j=i+1 Ai j v j

)
3.5 end
3.6 end
3.7 return v

Although the Jacobi smoother and the Gauss-Seidel smoother (or their damped
versions, respectively) are very similar at first glance, they are very different in prac-
tical application. Gauss-Seidel shows a significantly better convergence than Jacobi.
It also needs less storage space on the computer: while Jacobi needs to store v and
v , Gauss-Seidel can update v in-place, because it uses the updated values as soon as
they are available, anyway. Hence, so far, Gauss-Seidel would be preferable. Unfor-
tunately, though, Gauss-Seidel can—in general—not be parallelized, because com-
puting v i requires v j for all j < i . In today’s computing environment this is such a
severe disadvantage that it outweighs all the advantages.

In practice, the issue is usually not that severe, though, because A is sparse, and
v i does, therefore, not depend on all v j with j < i . The sparsity pattern of A depends
on the PDE and the discretization, so, giving a general statement about how well
Gauss-Seidel can be parallelized is not possible. Fig. 2.6 shows a 2D grid with 5×5
nodes. Drawn at node 13 is a 5-point operator stencil, a typical result, e. g., from
discretizing the Laplace equation with finite elements. The drawing reveals that for
updating node 13 updated values are only required from nodes 8 and 12. Node 9, for
example, could thus be updated at the same time. The drawing in the middle shows
how to exploit this. Sweeping from the lower left to the upper right corner, the nodes
on the diagonals can be updated in parallel: after node 1 is updated, nodes 2 and 6
can be updated in parallel, then nodes 3, 7, and 11, and so on. With that technique,
instead of N sequential steps, only

p
N sequential steps are necessary. Note that this

technique does not adversely affect the convergence of the Gauss-Seidel algorithm,
because for computing v i the values of v j are still available for all j < i .

The diagonal sweep is easily applicable only to structured grids, and its paral-
lelism is still mediocre. A technique that is more generally applicable and provides
better parallelism—however, at the expense of loosing optimal convergence—is the
red-black Gauss-Seidel algorithm. It is illustrated in the right drawing of Fig. 2.6. The
basic idea is that nodes are assigned “colors” such that nodes of the same color are
not connected by the operator stencil. For the 5-point stencil in 2D two colors—
thus the name “red-black”— are necessary. Fig. 2.6 shows the resulting node parti-
tioning. Now, first all “black” nodes can be updated in parallel, and then all “red”

22

www.manaraa.com

2.3. MULTIGRID METHODS

2322 252421

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

Figure 2.6: 5×5 grid with 5-point operator stencil (left). Two possible update orders:
diagonal (middle) and red-black (right).

nodes. Thus, only two sequential steps are necessary, now, and N /2 nodes can be
updated in parallel. However, not all values of v j for j < i are available, any more,
when updating v i , which leads to a decreased convergence rate. Anyway, the trade-
off between parallelism and convergence is good. Therefore, the algorithm is often
used in practice, also in HHG. For the semi-structured tetrahedral meshes used in
HHG four colors are necessary; see [19].

Mesh resolutions and levels

One characteristic of a mesh is its resolution, i. e., the number of nodes per unit dis-
tance, area, or volume. While for a structured, regular grid this measure can be quan-
tified precisely, it may be determined only roughly for an unstructured mesh. In any
case, for a given mesh, a mesh with a higher resolution can be constructed either
by re-discretizing the domain with different parameters or by adding new nodes be-
tween the existing nodes. For constructing a mesh with a lower resolution, the anal-
ogous is true: either re-discretize the domain or remove some nodes from the exist-
ing mesh. The first approach, re-discretizing the domain, can be combined with the
multigrid idea. However, the latter approach is much more suitable for multigrid,
because it ensures that all the nodes of the coarse mesh are also present in the fine
mesh—a property that is extremely useful when it comes to transferring information
between the meshes.

Independent of how the meshes with different resolutions are created, the term
level is used to address individual meshes and organize them in a hierarchy. A fine
mesh with a high resolution is associated with a high level, a coarse mesh with a low
level.

Fig. 2.7 shows a hierarchy of meshes in 1D. The mesh at level 0 has two boundary
nodes (at x = a and x = b) and one interior node. The distance between the nodes
is h0. The meshes at level 1 and 2 were created by adding additional interior nodes
between the nodes of the mesh on the previous level. With increasing level, the res-
olution increases as the distance between the nodes decreases.

Inter-grid transfer operators

As described briefly in the introduction to this section, multigrid aims to correct
the error of the fine-grid approximation on a coarser mesh. In order to transfer the
error to the coarser mesh and the result of the correction back to the finer mesh,
inter-grid transfer operators will be defined. Transfer of information from a fine to a

23

www.manaraa.com

CHAPTER 2. BASICS

x

h0

h1

ba

l = 0

l = 1

l = 2

Ω0 = {x5}

Ω1 = {x3, x5, x7}

Ω2 = {xi | i = 2, . . . ,8}

Ω= (a,b)

h2

x1 x9x2 . . .

Γ= {a,b}

Γl = {x1, x9}

Figure 2.7: Hierarchy of regular grids in 1D.

coarse mesh will be called restriction, transfer in the opposite direction will be called
prolongation.

Both operations can be expressed as matrix-vector multiplications. Assume vl

and vl−1 are vectors on the fine mesh and on the coarse mesh, respectively. The
restriction operator shall be denoted with R l−1

l ; with this operator the vector on the
coarse mesh is calculated as

vl−1 = R l−1
l vl .

If Nl and Nl−1 are the numbers of nodes on the fine and the coarse mesh„ respec-
tively, then vl ∈ RNl , vl−1 ∈ RNl−1 , and R l−1

l ∈ RNl−1×Nl . The prolongation operator

P l
l−1 ∈RNl×Nl−1 fulfills

vl = P l
l−1vl−1 .

As described above, different ways of generating the mesh hierarchy require dif-
ferent transfer operators. For the sake of simplicity, and since it is also the case in
HHG, we assume that all nodes of the mesh at level l −1 are also contained in the
mesh at level l .

The prolongation operator that is most common in multigrid applications is lin-
ear interpolation (or bi-linear interpolation, etc., for higher dimensions). While the
exact form of the operator depends on the mesh, the basic idea is to compute the
values at the new nodes on the fine mesh as an average of the values at the surround-
ing nodes on the coarse mesh. For the 1D mesh shown in Fig. 2.7 the prolongation
operator is

P l
l−1 = (pi j)

where pi j =

1, if i −1 = 2(j −1)

1/2, if i = 2 j or i = 2(j −1)

0, otherwise

for i ∈ {1, . . . , Nl } and j ∈ {1, . . . , Nl−1} .

For example, the prolongation by linear interpolation from level 0 to level 1 evaluates
to

P 1
0 =

1 0 0

1/2 1/2 0
0 1 0
0 1/2 1/2
0 0 1

 .

24

www.manaraa.com

2.3. MULTIGRID METHODS

Two different restriction operators shall be introduced here. One is closely re-
lated to the linear interpolation operator. It is called full-weighting, because it cal-
culates the value of a node on the coarse mesh as a weighted average of the values
of the corresponding node and its neighboring nodes on the fine mesh:

R l−1
l = (ri j)

where ri j =

1/2, if i −1 = 1/2(j −1)

1/4, if i = 1/2 j or i −1 = 1/2 j

0, otherwise

for the interior nodes, i. e., for i ∈ {2, . . . , Nl−1 −1} and j ∈ {2, . . . , Nl −1} ,

and where ri j =
{

1, if i −1 = 1/2(j −1)

0, otherwise

for the boundary nodes, i. e., for i ∈ {1, Nl−1} or j ∈ {1, Nl } .

For example, the full-weighting restriction from level 1 to level 0 evaluates to

R0
1 =

 1 0 0 0 0
0 1/4 1/2 1/4 0
0 0 0 0 1

 .

A simpler restriction operator is injection. This operator maps the value of every
entry of the vector on the fine mesh to the corresponding entry of the vector on the
coarse mesh, i. e., to the vector entry that is associated with the same node. For our
1D mesh, the operator is defined as

R̂ l−1
l = (

ri j
)

where ri j =
{

1, if j −1 = 2(i −1)

0, otherwise

for i = 1, . . . , Nl−1 and j = 1, . . . , Nl .

The injection operator from level 1 to level 0 evaluates to

R̂0
1 =

 1 0 0 0 0
0 0 1 0 0
0 0 0 0 1

 .

As the name suggests, this operator is an injective mapping, i. e., every value on the
coarse mesh is determined by exactly one value on the fine mesh. The advantage
of injection over full weighting is the lower computational complexity. Since the op-
erator matrix contains fewer non-zero entries, fewer numerical operations have to
be performed. In most cases, however, the full-weighting operator needs to be used,
because its smoothing property is beneficial for the convergence of the multigrid
algorithm.

The linear system on different levels

Given meshes on different levels, the partial differential operator A of (2.1) can be
discretized on each level, which yields a series of discrete operators

Al ∈RNl×Nl .

25

www.manaraa.com

CHAPTER 2. BASICS

Another way of constructing the discrete operators is Galerkin coarsening. After
discretizing A on level l (yielding Al), the operators on the coarser levels can be
constructed using the prolongation and restriction operators:

Al−1 = R l−1
l Al P l

l−1 .

Galerkin coarsening is necessary in algebraic multigrid methods, which work on dif-
ferent levels without explicitly constructing a mesh on each level (see [48], Appendix
A).

Within the scope of this thesis, direct construction of the operators on each level
will be assumed.

The Two-grid cycle

The building blocks that have been introduced—smoothers, transfer operators, dis-
crete operators on each level—will now be used to construct a solver working with
meshes on two levels, l and l −1.

The goal is to compute the solution ul of the linear system

Al ul = fl .

on level l up to a negligible error.
The two-grid cycle is started with an initial approximation vl to the solution ul .

The error of this approximation is defined as

el = ul − vl .

The first step of the two-grid cycle is to smooth the error by applying ν1 iterations
of a smoother to the linear system

Al vl = fl ,

where ν1 is a small number independent of Nl .
The result of the smoothing process is an improved approximation v l that has a

smooth error e l . Concerning smoothness, it is important at this point to distinguish
between the solution and the error. The solution and its approximation are gener-
ally not smooth, which means that they can not be represented on a coarser mesh
without loss of detail. Smoothness can only be assumed for the error. In that sense,
Fig. 2.5 was deceiving, because there the solution was zero—i. e., very smooth— and
its approximation was equal to the error and thus also being smoothed.

Since the error is smooth on level l , it could be restricted to level l −1 and elimi-
nated there at a lower cost than on level l . Unfortunately, restricting e l is not possi-
ble, because it is not known—if it were known, ul could be computed immediately.

Fortunately, though, there is a computable quantity that has similar smoothness
properties: the residual. It is defined as

r l = fl − Al v l

The residual of ul is zero:

0 = fl − Al ul .

26

www.manaraa.com

2.3. MULTIGRID METHODS

Subtracting the above equations relates the residual to the error:

r l = Al
(
ul − v l

)
⇔ r l = Al e l .

Since Al is an elliptic partial differential operator, the result of multiplying a smooth
function with Al is again a smooth function. Thus, r l can be represented well on the
coarse mesh. Thus, a good approximation to the error can be computed on level l−1
by solving

Al−1vl−1 = fl−1 ,

where

fl−1 = R l−1
l rl .

This step is called coarse-grid correction. In practice, the smoother used on level l is
usually employed also for solving the linear system on level l−1. The initial guess for
the solution can in this case be chosen as v∗

l−1 = 0, because it is an approximation of
the residual on level l , which is ideally zero. Since it will be necessary in Chapter 4 to
clearly distinguish between the initial guess and the solution on level l −1, we give
them different names already at this point. The initial guess is denoted with v∗

l−1,
the solution with vl−1.

The solution vl−1 can then be prolongated to level l and used there to correct v l :

ẽl = P l
l−1vl−1

⇒ ṽl = v l + ẽl = v l +P l
l−1vl−1 .

Therefore, ẽl is also called correction.
Since on level l −1 the linear system has fewer degrees of freedom than on level

l , some functions on level l are identical to each other when restricted to level l−1—
they alias. This poses a problem to the two-grid algorithm: the coarse-grid correc-
tion can not be prevented from introducing such components into the correction
ẽl . However, since only non-smooth functions can alias on the coarse mesh, those
components can be eliminated from ṽl by applying ν2 smoothing iterations after
the coarse-grid correction.

With the final smoothing steps, the two-grid cycle is complete. It is summarized
in Algorithm 4.

2.3.3 Types of multigrid cycles

The two-grid cycle (Algorithm 4) shows improved computational efficiency over us-
ing a simple iterative solver, because the correction is computed on the coarse mesh,
which has a significantly smaller number of unknowns. This section addresses two
improvements to the two-grid cycle:

• how to solve the linear system on level l −1, and

• how to generate a good initial guess on level l .

27

www.manaraa.com

CHAPTER 2. BASICS

Algorithm 4: The two-grid cycle.

4.1 Algorithm twogridcycle(A, vl , fl , R, P, l , ν1, ν2)
4.2 v l = smooth(Al , vl , fl , ν1)
4.3 rl = fl − Al v l

4.4 fl−1 = R l−1
l rl

4.5 v∗
l−1 = 0

4.6 vl−1 = solve(Al−1v∗
l−1 = fl−1)

4.7 ṽl = v l +P l
l−1vl−1

4.8 vl = smooth(Al , ṽl , fl , ν2)
4.9 return vl

restriction

prolongation

solving

ν2ν1

l
2

1

0

pre-
smoothing

post-
smoothing

i = 1 i = 2

Figure 2.8: V-cycle (left) and γ-cycle with γ= 2 (right).

The V-cycle

In Fig. 2.7 the number of unknowns differs by a factor of two between two consec-
utive meshes. For d-dimensional structured grids that are coarsened in all spatial
directions the factor is 2d . This is a great reduction in the number of unknowns. For
very large Nl , however, Nl /2d is still very large, and an iterative solver would sill have
slow convergence. Therefore, it makes sense to apply the coarse-grid correction re-
cursively, in the extreme case up to a trivial grid with only one unknown.

The resulting algorithm is called V-cycle, because it can be visualized as shown in
Fig. 2.8. Algorithm 5 describes it formally. Compared to the two-grid cycle, it has one
additional argument: ls . This parameter defines the level on which the recursion is
stopped and the linear system is solved. The choice of ls depends on various factors,
for example the properties of the mesh and the trade-off between computation and
communication in parallel computing.

Note that, depending on how good the initial approximation vl is, usually several
V-cycles are necessary to reduce the error of the approximation to an acceptable
level.

The γ-cycle

Since the V-cycle does not necessary compute an accurate enough approximation
after one iteration, it can make sense to also apply the recursive V-cycle more than
once. Algorithm 6 shows this generalization of the V-cycle, which is called γ-cycle.
The parameter γ defines the number of times the cycle is applied recursively. Fig. 2.8

28

www.manaraa.com

2.3. MULTIGRID METHODS

Algorithm 5: The V-cycle.

5.1 Algorithm vcycle(A, vl , fl , R, P, l , ls , ν1, ν2)
5.2 if l = ls then
5.3 solve(Al vl = fl)
5.4 else
5.5 v l = smooth(Al , vl , fl , ν1)
5.6 rl = fl − Al v l

5.7 fl−1 = R l−1
l rl

5.8 v∗
l−1 = 0

5.9 vl−1 = vcycle(A, v∗
l−1, fl−1, R, P, l −1, ν1, ν2)

5.10 ṽl = v l +P l
l−1vl−1

5.11 vl = smooth(Al , ṽl , fl , ν2)
5.12 end
5.13 return vl

illustrates the γ-cycle for γ= 2.

Algorithm 6: The γ-cycle (W-cycle for γ= 2).

6.1 Algorithm gammacycle(A, vl , fl , R, P, l , ls , γ, ν1, ν2)
6.2 if l = ls then
6.3 solve(Al vl = fl)
6.4 else
6.5 v l = smooth(Al , vl , fl , ν1)
6.6 rl = fl − Al v l

6.7 fl−1 = R l−1
l rl

6.8 vl−1 = v∗
l−1 = 0

6.9 for i = 1. . .γ do
6.10 vl−1 = gammacycle(A, vl−1, fl−1, R, P, l −1, ν1, ν2)
6.11 end

6.12 ṽl = v l +P l
l−1vl−1

6.13 vl = smooth(Al , ṽl , fl , ν2)
6.14 end
6.15 return vl

While Algorithm 6 assumes that γ is the same on all levels, it is also possible to
choose different values of γ on each level. Chapter 5 will discuss an algorithm for
optimizing the choice of the parameters γ and ls .

Full multigrid

The problem of creating a good initial approximation for the V-cycle is solved by
the full multigrid algorithm. It is illustrated in Fig. 2.9. The algorithm starts with
computing the solution on the lowest level ls , where it is cheap to solve the linear
system. The solution is then propagated to the next finer level, where it is used as an
initial approximation for one or more γ-cycles.

29

www.manaraa.com

CHAPTER 2. BASICS

l
2

1

0

Figure 2.9: The full multigrid scheme with µ= 1 and γ= 1 for ls = 0 and l f = 2.

Algorithm 7 formally defines this algorithm. The coarsest and finest levels, ls and
l f , respectively, have to be given as parameters. The parameter µ defines how many
complete γ-cycles are executed on each level.

For the prolongation of the solution a new prolongation operator may be nec-
essary. For the prolongation of the correction in the γ-cycle (line 6.12) an operator
with a relatively low order of accuracy is necessary, because the correction is smooth
on the fine mesh. The solution, however, is generally not smooth on the fine mesh;
its smoothness is determined by the differential operator A. Therefore, in order to
prolongate the solution from level l −1 to level l with sufficient accuracy, the oper-
ator has to have an order that is higher than the discretization order of Al [48]. The
operator for prolongating the solution is denoted by P̂ l

l−1.

Algorithm 7: The full multigrid algorithm.

7.1 Algorithm fullmg(A, v, f , R, P, P̂ , ls , l f , µ, γ, ν1, ν2)
7.2 uls = solve(Als uls = fls)
7.3 for l = ls +1. . . l f do
7.4 vl = P̂ l

l−1ul−1

7.5 for i = 1. . .µ do
7.6 vl = gammacycle(A, vl , fl , R, P, l , ls , γ, ν1, ν2)
7.7 end
7.8 end
7.9 return vl

Since the initial approximation to the solution is now very good on each level,
small numbers for ν, µ, and γ that are independent of the size of the linear sys-
tem are sufficient for solving the system on level l f up to discretization accuracy.
As Section 2.3.5 will show in more detail, the overall computational effort of the full
multigrid algorithm is proportional to the number of unknowns on level l f . Thus,
the solver has optimal complexity.

2.3.4 The full approximation scheme

All multigrid schemes described up to now solve the residual equation Ae = r on the
coarse mesh. This technique is not applicable to non-linear PDEs, because for these
the residual equation does not necessarily have a solution. For solving non-linear

30

www.manaraa.com

2.3. MULTIGRID METHODS

PDEs, the full approximation scheme (FAS) has been developed [14]. This thesis does
not consider non-linear PDEs in detail, but FAS is important also for linear PDEs,
namely in the context of adaptive mesh refinement (see Chapter 4). Therefore, it is
described in the following paragraphs.

Instead of approximating only the residual equation, FAS fully approximates the
solution on the coarse mesh. The relation between the residual and the solution can
be seen by expanding the residual equation:

Al e l = r l

⇔ Al e l + Al v l − Al v l = r l

⇔ Al
(
e l + v l

)− Al v l = r l (2.28)

⇔ Al ul − Al v l = r l . (2.29)

Both the current approximation and the residual are known and can be restricted
to the coarse mesh.

v∗
l−1 = R̂ l−1

l v l

dl−1 = R l−1
l r l .

Since v l is generally not smooth, injection is used for restricting it. Using full weight-
ing would not pay off; it could even add additional errors, e. g., if v l already con-
tained the exact solution. The current error is not known, but it also has a represen-
tation on the coarse mesh, which will be denoted by

cl−1 = R l−1
l e l . (2.30)

Using these relations, the expanded residual equation (2.28) can be approximated
on the coarse mesh:

Al−1

(
R l−1

l e l + R̂ l−1
l v l

)
− Al−1R̂ l−1

l v l = R l−1
l r l

⇔ Al−1
(
cl−1 + v∗

l−1

)− Al−1v∗
l−1 = dl−1

Defining

vl−1 = cl−1 + v∗
l−1 and (2.31)

fl−1 = dl−1 + Al−1v∗
l−1 (2.32)

as solution and right-hand side, respectively, the problem on level l−1 can be written
as

Al−1vl−1 = fl−1 .

The correction for the fine mesh can be determined from the solution on the
coarse mesh using (2.31):

cl−1 = vl−1 − v∗
l−1 .

As per (2.30) cl−1 is the approximation of e l on the coarse mesh, it can be prolon-
gated and used for correcting the current approximation on the fine mesh:

ṽl = v l +P l
l−1cl−1 .

These considerations are summarized in Algorithm 8, which formally describes
the full approximation scheme. Like in the γ-cycle, the system on level l −1 is solved
by applying the FAS-cycle recursively. v∗

l−1 is used as initial guess for the first FAS-
cycle on the coarse mesh.

31

www.manaraa.com

CHAPTER 2. BASICS

Algorithm 8: The full approximation scheme, based on the γ-cycle defined
in Algorithm 6.

8.1 Algorithm FAScycle(A, vl , fl , R, R̂, P, l , ls , γ, ν1, ν2)
8.2 if l = ls then
8.3 vl = solve(Al vl = fl)
8.4 else
8.5 v l = smooth(Al , vl , fl , ν1)
8.6 r l = fl − Al v l

8.7 dl−1 = R l−1
l r l

8.8 vl−1 = v∗
l−1 = R̂ l−1

l v l

8.9 fl−1 = dl−1 + Al−1vl−1

8.10 for i = 1. . .γ do
8.11 vl−1 = FAScycle(A, vl−1, fl−1, R, R̂, P, l −1, ls , γ, ν1, ν2)
8.12 end

8.13 ṽl = v l +P l
l−1

(
vl−1 − v∗

l−1

)
8.14 vl = smooth(Al , ṽl , fl , ν2)
8.15 end
8.16 return vl

Correspondence with correction scheme

For linear systems of equations the correction scheme and the full approximation
scheme are analytically equal, i. e., for identical input parameters, the two algo-
rithms return the same approximation to the solution. This property will be required
to prove the correctness of the adaptive mesh refinement algorithm presented in
Chapter 4. In order to prove the equality for the γ-cycle, it will first be proved for the
two-grid cycle.

Theorem 2.3.1. The iteration matrix of a two-grid cycle using the full approximation
scheme (Algorithm 8) is equal to the iteration matrix of a two-grid cycle using the
correction scheme (Algorithm 4).

Proof. Since the compared numerical schemes are identical from the beginning un-
til the residual computation (lines 4.3 and 8.6, respectively), and from the post-
smoothing step (lines 4.8 and 8.14, respectively) until the end, it is sufficient to com-
pare the iteration matrices for the steps in between.

For the correction scheme, expanding the formula for ṽl (line 4.7) by using lines
4.4–4.6 yields

ṽl = v l +P l
l−1vl−1

= v l +P l
l−1 A−1

l−1 fl−1

= v l +P l
l−1 A−1

l−1R l−1
l rl . (2.33)

For the full approximation scheme, expanding the formula for ṽl (line 8.13) yields

ṽl = v l +P l
l−1

(
vl−1 − v∗

l−1

)
= v l +P l

l−1

(
A−1

l−1 fl−1 − v∗
l−1

)
= v l +P l

l−1

(
A−1

l−1

(
R l−1

l r l + Al−1v∗
l−1

)
− v∗

l−1

)
.

32

www.manaraa.com

2.3. MULTIGRID METHODS

In the following step, linearity of Al−1 is assumed, i. e., the proof would fail for non-
linear systems of equations at this point. The equation is further transformed into

ṽl = v l +P l
l−1

(
A−1

l−1R l−1
l r l + A−1

l−1 Al−1v∗
l−1 − v∗

l−1

)
= v l +P l

l−1 A−1
l−1R l−1

l r l . (2.34)

Equations (2.33) and (2.34) are equal, i. e., the coarse-grid correction matrices
of the correction and the full approximation scheme are equal for linear systems of
equations. Since the schemes are identical in the remaining parts, they are equal
altogether, and they yield the same results when employed in the two-grid algo-
rithm.

A γ-cycle over three levels (l f = ls + 2) consists of pre- and post-smoothing on
level ls +2 and two-grid cycles over levels ls and ls +1 for coarse-grid correction. The
full approximation scheme and correction scheme have been proven equal for the
two-grid cycle, and the schemes do not differ in the smoothing on level l f . Therefore,
the γ-cycle over three levels computes the same solution vl f

with either of the two
schemes. A γ-cycle over an arbitrary number of n levels with n ≥ ls + 3 consists of
smoothing on the finest mesh and recursive γ-cycles on the n −1 coarser meshes.
Therefore, the full approximation scheme is analytically equivalent to the correction
scheme in γ-cycles over any number of levels.

In practice, however, it is possible that the two schemes do not produce numer-
ically equivalent results. The full approximation scheme has more numerical oper-
ations than the correction scheme, and the linear system that has to be solved on
the coarsest level is different. When running the algorithms on a computer, the typ-
ical effects of limited precision, like roundoff errors, will be present. The numerical
scheme used for solving “exactly” on the coarsest mesh may work slightly better for
one of the problems, introducing differences at this point. Therefore, full approxi-
mation scheme and correction scheme may still produce different results, even if
they are implemented in a common software framework, e. g., HHG.

2.3.5 Convergence and computational complexity

Their computational complexity is the most important argument for using multigrid
methods. It is astonishing to see how basic iterative schemes with quite bad com-
putational complexity are employed to construct schemes with optimal complex-
ity. This section highlights models for the convergence rates and the computational
complexity of the relevant algorithms—from the Jacobi iteration up to the full multi-
grid scheme—in the style of a survey. The reader shall be provided with a summary
of the arguments leading to the statement that full multigrid is an optimal solver,
as claimed in Section 2.3.3. The required proofs and mathematical foundations are
mostly not presented in detail, because they are not required in the remainder of
this thesis. Instead, references to the detailed proofs in the literature are provided.

The computational complexity of an algorithm is the number of elementary nu-
merical operations that are required to solve a problem, depending on the problem’s
size. It will not be given as an exact number of operations, but in O notation, which
relates the number of unknowns N to the required number of elementary operations
M by

M =O(f (N)) ⇒ M ≤C · f (N) , where 0 <C <∞ .

33

www.manaraa.com

CHAPTER 2. BASICS

The computational complexity is not to be confused with the actual computational
performance on a computer, which will be discussed in Chapter 3.

Since the number of elementary operations per iteration is constant for the it-
erative schemes considered here, the decisive quantity for determining the compu-
tational complexity is the number of iterations required to solve the problem. The
problem is considered solved, if the algebraic error of the current approximation is
smaller than the discretization error. Clearly, the number of iterations depends on
the difference between the initial error and the discretization error, but we can safely
assume that it is only a few orders of magnitude. The number of iterations required
to reduce the error by a factor of ten shall be denoted by ν. The relationship between
the error after ν iterations e(ν) and the initial error e(0) is then given by

‖e(ν)‖
‖e(0)‖ ≤ 1

10
, (2.35)

where ‖·‖ is the L2 norm.
In order to determine ν, the error reduction per iteration must be known. This

quantity, which is called convergence rate, is a characteristic number of an iterative
scheme. In the following, convergence rates for the schemes introduced above will
be derived.

Convergence and complexity of basic iterative schemes

Each of the basic iterative schemes is represented by its individual iteration matrix
M , which represents one iteration of the algorithm. It connects an approximation
v (i) with the approximation v (i+1) of the next iteration via

v (i+1) = M v (i) .

Since the schemes are fix-point iterations, they do not alter the solution, i. e.,

u = Mu .

Subtracting the two equations shows how the algebraic error is affected by the iter-
ation matrix:

u − v (i+1) = M(u − v (i))

⇔ e(i+1) = Me(i)

⇔ e(i+1) = M i+1e(0)

For the error in the L2 norm,

‖e(i+1)‖ = ‖M i+1‖‖e(0)‖

holds, if the corresponding matrix 2-norm

‖M‖ =
√
ρ(M T M) ,

is used, The matrix 2-norm is based on the spectral radius, which is given by

ρ(A) = max|λ(A)| ,

where λ(A) = (λ1(A), . . . ,λN (A))T are the eigenvalues of A.

34

www.manaraa.com

2.3. MULTIGRID METHODS

Since the iteration matrix is symmetric, its 2-norm can be simplified to

‖M‖ =
√
ρ(M T M) =

√
ρ(M 2) = ρ(M) .

Since ρ(M) does not depend on e(i), the error norm after ν iterations can be written
as

‖e(ν)‖ = (
ρ(M)

)ν ‖e(0)‖ . (2.36)

Using this equation in (2.35) yields(
ρ(M)

)ν ≤ 1

10
,

and, thus, the number of iterations necessary to reduce the error by an order of mag-
nitude is

ν ≥ 1

log10

(
ρ(M)

) . (2.37)

In order to determine ν, the spectral radius of M has to be calculated. λ(M) will
be derived from λ(A), the eigenvalues of the system matrix of the model problem.
Recall from (2.26) that the iteration matrix of the Jacobi iteration is basically just a
re-ordering of A, the system matrix of the model problem. Therefore, the iteration
matrix has the same eigenvalues as the system matrix. For the damped Jacobi itera-
tion, the iteration matrix is

(1−ω)I +ωD−1(L+U)

= I −ω(
I −D−1(L+U)

)
,

and, therefore, the eigenvalues of the iteration matrix are

λk (M) = 1−ω(1−λk (A)) , k = 1, . . . , N .

As shown in [48], the system matrix of the model problem (2.1) has the eigenvalues

λk (A) = cos

(
kπ

N

)
, k = 1, . . . , N −1.

Large values of λk (M) are associated with small k, because then cos(kπ/N) is close
to 1. For small k the approximation

cos

(
kπ

N

)
≈ 1− 1

2

(
kπ

N

)2

holds, and the largest eigenvalue is

λ1(M) ≈ 1−ω
(
1−1− 1

2

(π
N

)2
)

= 1− ωπ2

2N 2 .

Hence, for the damped Jacobi iteration the error reduction after ν iterations is,
according to (2.36),

(
ρ(M)

)ν =
(
1− ωπ2

2N 2

)ν
≈ e−

ωπ2ν
2N 2 .

35

www.manaraa.com

CHAPTER 2. BASICS

That means that ν has to increase quadratically with N in order to maintain the
desired convergence rate. Thus, the computational complexity of the damped Jacobi
iteration is in O(N 2).

The computational complexity of the Gauss-Seidel and the SOR iterations is also
in O(N 2). The proof follows the same lines (see [48], Section 3.3), but deriving the
eigenvalues of the respective iteration matrices is a bit more involved. Generally,
the computational complexity can be determined in this way for many iterative
schemes, among them the two-grid cycle and the γ-cycle.

Convergence and complexity of the γ-cycle

For more complex schemes, however, a rigorous eigenvalue analysis of the corre-
sponding iteration matrices quickly becomes very challenging. For the two-grid cy-
cle (Algorithm 4), the iteration matrix M2G is composed of the smoother’s iteration
matrix MS , the restriction and prolongation matrices R l−1

l and P l
l−1, the operator

matrix Al−1, and the identity matrix Il :

M2G = (MS)ν2
(
Il −P l

l−1(Al−1)−1R l−1
l Al

)
(MS)ν1 .

Computing the eigenvalues, and, thus, the convergence rate of M2G is possible
with rigorous Fourier analysis, but more elegant and versatile is the local Fourier
analysis (LFA). Like the method described for the basic iterative schemes above, the
LFA is also based on determining the eigenmodes of the iteration matrix. The deci-
sive difference is that it assumes periodic boundary conditions. Due to this assump-
tion all considerations can be restricted to a single interior mesh node, or, in terms
of the linear system, to a single matrix row.

For problems like (2.1) it can be shown that the two-grid convergence rate is
independent of the number of unknowns (see [48], Section 3.3):

‖M2G‖ = const. in N . (2.38)

This does not say anything about the computational complexity, though, because
the cost for solving the coarse-grid problem—abstracted as (Al−1)−1 in the iteration
matrix—may very well depend on the number of unknowns. Therefore, the compu-
tational complexity of the two-grid algorithm will not be analyzed further.

Anyway, the result (2.38) is an important building block in the analysis of the
γ-cycle, though. The γ-cycle’s iteration matrix Mγ is similar to the two-grid matrix,
but the term (Al−1)−1 is replaced by the recursive term Il−1 − (Mγ,l−1)γ(Al−1)−1:

Mγ,l = (MS)ν2
(
Il −P l

l−1

(
Il−1 − (Mγ,l−1)γ

)
(Al−1)−1P l−1

l Al

)
(MS)ν1 .

Note that recursive expansion of the term cancels out all matrix inversions except
for (Als)−1 on the coarsest level.

The similarity of Mγ and M2G allows for a relatively simple proof that theγ-cycle’s
convergence rate depends linearly on the two-grid cycle’s convergence rate. Given
that

‖M2G ,l‖ ≤ σ∗ ,

where σ∗ is a (small) constant independent of N (see (2.38)), one can show that

‖Mγ,l‖ ≤ ηl , where ηl =σ∗C (ηl−1)γ and η1 =σ∗ ,

36

www.manaraa.com

2.3. MULTIGRID METHODS

where C is a (small) constant independent of N. For γ≥ 2 one can show that

η ≤ 2σ∗

by using the limit equation for

η = σ∗+Cηγ .

The detailed proof can be found in [48], Section 3.2. For γ = 1 the proof is not that
simple, but it can also be shown that η ∈O(σ∗) (see [48], Appendix B).

Thus, the γ-cycle has the same convergence order as the two-grid cycle. In con-
trast to the two-grid cycle, for the γ-cycle also an upper bound on the number of
operations can be given, because the solving step on level l −1 with uncertain com-
plexity is replaced by a well-defined recursion. Concretely, an upper bound on the
number of operations is determined as follows. The given line numbers refer to Algo-
rithm 6. The steps on level l are smoothing (lines 6.5 and 6.13), residual calculation
(line 6.6), recursion (line 6.10), and prolongation (line 6.12). All these steps have lin-
ear complexity in Nl . The steps on level l −1 are initialization of the approximation
(line 6.8) and the recursive γ-cycle (line 6.10). The initialization is linear in Nl−1, the
complexity of the recursion is defined by recursion. The effort for solving on level
ls = 0 (line 6.3) is constant, because the linear system is trivial. If ls > 0, a higher cost
for solving has to be assumed. For the following estimation to hold it is necessary
that the effort for solving on the coarsest level can be assumed to be constant or
negligible compared to the effort on the finest level. The number of operations O(l)
on level l can be estimated as

O(l) ≤ C Nl +O(l −1) , where 1 ≤C <∞ .

Expanding the equation yields

O(l) ≤ C Nl +C Nl−1 + . . .+C Nls+1 +C .

Now an essential assumption has to be made. The number of unknowns shall in-
crease exponentially with the level. For the hierarchy in Fig. 2.7 Nl ≈ 2l . For such
regular refinements in d dimensions one would get Nl ≈ 2dl . In other application
scenarios, e. g., if the mesh hierarchy is constructed by successively coarsening a
fine initial mesh, this condition may be harder to fulfill. If the assumption holds, the
number of operations is

O(l) ≤ C 2l +C 2l−1 + . . .+C 20 ≤ 2C 2l

⇒ O(l) ∈ O(Nl) .

Since the convergence rate is bounded by a constant independent on N , as shown
above, the γ-cycle’s computational complexity for reducing the error by an order of
magnitude is O(N). This is already a good result, but the number of γ-cycles that
is required to drive the error below the discretization error still depends on the ini-
tial error. Thus, in order to obtain a solver that only needs a small, fixed number of
γ-cycles, it is necessary to provide an initial guess with a small error. This is achieved
with the full multigrid algorithm.

37

www.manaraa.com

CHAPTER 2. BASICS

Convergence of full multigrid

In the full multigrid algorithm a fixed, N -independent number of γ-cycles is exe-
cuted on each level. Therefore, the total number of operations for this algorithm is
also in O(N).

It can be shown that the algorithm computes an approximation with discretiza-
tion accuracy, if the operator P̂ used for interpolating the approximation is good
enough. Concretely, the order of the interpolation has to be better than the order of
the discretization. Then, the initial approximation on level l cannot become arbi-
trarily large, if the final approximation on level l −1 was within discretization accu-
racy. Then, a fixed number of γ-cycles on level l reduces the error below discretiza-
tion accuracy again. A concise proof of this statement can be found in [48], Section
3.2.2. The bottom line is that full multigrid requires only O(N) operations to solve a
linear system in N unknowns with discretization accuracy. In other words, full multi-
grid is a solver with optimal computational complexity.

2.4 Hierarchical Hybrid Grids

The concepts of finite elements and multigrid, which were described in the previ-
ous sections, are combined in the Hierarchical Hybrid Grids (HHG) software library.
HHG strives to provide highly efficient algorithms for numerical simulations on the
largest scale, using supercomputers.

The scale of a numerical simulation is determined by the size of the domain and
the desired accuracy of the solution. Recall the example given in the introduction:
the acoustical simulation of a concert hall. The desired accuracy in this scenario
is determined by the sound frequencies that shall be simulated. If the full audible
spectrum shall be covered, then the required mesh resolution is in the millimeter
range—assuming that the sound propagation is simulated by computing the oscil-
lations of the air pressure that cause the sound waves. Note that at this point it does
not matter which discretization method is used—finite differences, finite elements,
or some other technique. Only the choice of the physical model—i. e., the PDE—
makes a difference. An indirect simulation in the frequency domain, for example,
would likely require a lower mesh resolution, however, at the cost of not being able
to precisely simulate acoustical phenomena like interference. The details of the do-
main’s geometry also influence the required mesh resolution. If the mesh does not
resolve details in the concert hall’s wall that influence the sound propagation, the ac-
curacy of the simulation suffers. Here, the choice of the discretization method does
make a difference. If the domain is regular, then a discretization with finite differ-
ences may be most suitable, because it achieves the required mesh resolution with
the smallest number of nodes. If the domain is irregular, a finite element discretiza-
tion is more suitable, because it can achieve a homogeneous mesh resolution with
the smallest number of nodes by adapting the elements to the domain’s shape.

In relation to the required resolution, the size of the domain in the concert hall
example is large. A regular mesh that covers a domain with a size of 10 m in each
dimension at a resolution in the millimeter range (i. e., 10−3 m) consists of (104)3 =
1012 nodes. Assuming that storing the physical values at the nodes in a computer’s
memory requires 8 bytes per value, the solution alone would already occupy 8×1012

bytes (8 terabytes) of memory. It is obvious that supercomputers are required, if sim-
ulations at this scale and beyond shall be performed.

38

www.manaraa.com

2.4. HIERARCHICAL HYBRID GRIDS

Besides the memory demand, the challenge of such a simulation is the time
needed to compute the solution. If a solver with non-optimal complexity is used,
the huge number of nodes (i. e., unknowns) easily causes the time to solution to be-
come unacceptably long, even if the solver is implemented efficiently. Assuming, for
example, a solver that can “quickly” solve a linear system with N = 109 unknowns in
0.1 s but has a complexity of O(N 2), the solution of a system with 1012 unknowns
would take (1012/109)2 times longer, i. e., 105 s. Thus, when having to choose be-
tween a solver that is very fast for systems of moderate size and a solver with optimal
complexity, for the simulations we are interested in the latter is clearly preferable.

The described requirements lead to the three main goals that guided the devel-
opment of HHG:

• to discretize the domain with the flexible finite element method,

• to solve the linear systems with multigrid methods that have optimal complex-
ity, and

• to make the implementation portable to a wide range of supercomputer ar-
chitectures.

HHG was initially designed and implemented by Benjamin Bergen. The basic
concepts and data structures, which result naturally from the above goals, have re-
mained the same up to now; they are described in detail in [10]. Since a basic un-
derstanding of these concepts will be necessary in the remainder of this thesis, the
following Sections recapitulate them briefly. The software architecture, which has
evolved from the original version in order to support adaptive mesh refinement (see
Chapter 4), is described in Section 2.4.4. The major improvements that have been
implemented within the scope of this dissertation are summarized in Section 2.4.5.
Section 2.4.6 presents sample code that shows how to implement a full multigrid
solver with the HHG library.

2.4.1 Concepts

This section presents the main concepts that HHG’s design follows in order to meet
the described goals. Numerical as well as software-architectural design decisions are
influenced by these goals.

Numerical concepts

In order to have flexibility for complex domains, HHG uses the finite element meth-
od. In order to perform simulations with optimal complexity, HHG uses the full
multigrid method. The main challenge that arises from these choices is to combine
both methods in a way that retains computational efficiency on massively paral-
lel computers. This is achieved by the central design concept, which defines how
the multigrid mesh hierarchy is created: instead of coarsening an initial fine mesh,
HHG regularly refines the elements of an initial coarse mesh. This approach pro-
duces many similar finite elements on the higher multigrid levels.

Fig. 2.10 shows an example for a mesh in 2D with triangles and quadrilaterals.
The initial coarse mesh is refined twice. The shading of the elements in one of the
triangles highlights their similarity. The sub-elements of each coarse triangle fall into
two similarity classes: one is a scaled version of the coarse element (gray); the other

39

www.manaraa.com

CHAPTER 2. BASICS

l = 0 l = 1 l = 2

Figure 2.10: Regular refinement of a 2D mesh with three triangles and one quadri-
lateral.

1 2

3

4

Figure 2.11: Regular refinement of a tetrahedron.

one is a scaled and rotated version of the coarse element (white). The sub-elements
of the quadrilateral are all in a single similarity class.

Fig. 2.11 shows a regular tetrahedron refinement according to Bey [11]. The re-
finement is constructed in a similar way as the triangle refinement: the mid-points
of adjacent edges (e. g., 12 and 14) are connected with new edges; additionally, one
pair of non-adjacent edges (here: 13 and 24; also other pairs could be chosen) is con-
nected with a new edge. The resulting fine mesh consists of eight tetrahedra, which
fall into five similarity classes: one class for the tetrahedra at the nodes of the original
tetrahedron and four classes for the tetrahedra in the interior. The tetrahedra at the
nodes of the original tetrahedron (one of them is highlighted) are scaled versions of
the original tetrahedron. An important property of this refinement technique is that
the number of similarity classes is stable; when refining the sub-elements again, the
resulting sub-elements will belong to the same five similarity classes again.

This regular refinement technique has several advantages. All are connected to
the fact that identical elements have the same stiffness matrix. The stiffness matri-
ces of elements on the higher multigrid levels can be calculated simply by scaling the
matrices of the corresponding similar elements in the coarse mesh. The first benefit
of this property is that the time required for computing these stiffness matrices is
just a fraction of the time that would be required for computing each element’s ma-
trix individually. Exploiting this property greatly speeds up the construction of the
system matrix.

40

www.manaraa.com

2.4. HIERARCHICAL HYBRID GRIDS

The second benefit is that the system matrix does not even have to be con-
structed. Due to the regularity of large parts of the meshes on the higher levels—they
are irregular only at the boundaries between the coarse elements—the numerical al-
gorithms can be implemented as stencil codes. In this technique, for each mesh node
the non-zero entries of the row of the operator matrix that corresponds to the node’s
unknown in the linear system is stored. The technique is called stencil code, because
each row of the operator matrix defines how the corresponding node is coupled to
its neighboring nodes. This coupling can be visualized as a stencil at the node. The
numerical algorithms, instead of performing matrix-vector multiplications, iterate
over the nodes and apply the stencil. Due to the regularity of the mesh, many nodes
have identical stencils. Of course, each unique stencil has to be stored only once.
Therefore, the memory required for storing the operators is minimal, compared to
the memory required for storing the variables.

This is the main benefit, which enables HHG to solve extremely large simula-
tions very quickly. Due to the minimal memory demand of the operators, almost the
complete main memory (RAM) of the supercomputer can be filled with variables
(e. g., unknowns, right-hand side, and residual), and the number of unknowns (i. e.,
mesh nodes) can therefore be very large. When executing the numerical algorithms,
loading the stencils from RAM takes almost no time, and almost the complete mem-
ory bandwidth is available for transferring the data stored in the variables. In other
words, the number of bytes transferred from/to memory per unknown is very low.
Thus, the number of unknowns that can be processed by a numerical algorithm per
second is very high.

Software engineering concepts

While the numerical concepts are the basis for solving large simulations quickly,
proper software engineering has to ensure that the implementation uses current
computer architectures efficiently. Another requirement is to produce software that
is portable to the relevant supercomputer systems.

Practical experience shows that the performance of finite element solvers is usu-
ally limited by a computer’s data transfer bandwidth rather than by its processor
speed. This is applies to stencil codes as well as to codes that store the system ma-
trix in other formats. Therefore, an important concept of the HHG implementation
is to optimize the data transfer. Note that this is equally important for local memory
access and for remote communication. With the tremendous increase in network
performance in recent years at a near-stagnation of local memory performance, the
difference in data transfer speed between local memory access and remote commu-
nication has become small, in terms of both latency and bandwidth.

HHG maximizes transfer bandwidth and minimizes latency-induced losses by
storing and transferring data in large blocks. For transferring a block of data that
is stored as a contiguous array in the RAM, latency occurs only at the start of the
transfer. This is true for both local memory access and remote communication: for
the transfer between local memory and processors, the hardware provides auto-
matic prefetching of consecutively stored data; the transfer over the network can
be grouped into a single communication event with latency occurring only at its be-
ginning.

When designing software for portability, the two key criteria are to use a common
programming language, e. g., C++, and to refrain from using non-standardized lan-
guage features or additional software libraries. While this approach is most portable,

41

www.manaraa.com

CHAPTER 2. BASICS

Figure 2.12: Triangle on refinement levels 0, 1, and 2, with mesh nodes assigned to
vertices (♦), edges (�), and the triangle’s interior (©).

the resulting software will not be fast on all computer architectures that play a role
in today’s supercomputing scene. Some systems draw their performance from spe-
cial hardware, like graphics processing units (GPUs). The usage of special libraries
is unavoidable in order to achieve feasible performance on these systems. More-
over, the ideal performance optimization technique depends on the hardware, i. e.,
one implementation will never run efficiently on all computers. In order to produce
software that is portable and even capable of accommodating to such rapid environ-
mental changes as in the field of GPU computing, HHG strictly separates the high-
level algorithms from the kernel routines that perform computation and communi-
cation. The high-level framework, which contains, e. g., basic functions for handling
finite element meshes and performing various multigrid algorithms, is written with
special attention to portability, so it can easily be compiled on any supercomputer
host system. The kernels, which perform the low-level linear algebra operations and
the inter-process communication, can easily be replaced with optimized versions.

2.4.2 Primitives and data structures

As argued above, it is important to organize the data into as large as possible con-
tiguous arrays in the RAM. HHG achieves this goal by breaking down each finite el-
ement into the basic geometric entities that constitute the element—the element’s
primitives. A three-dimensional finite element consists of the following primitives:

• the element’s interior (a three-dimensional primitive),

• the element’s faces (two-dimensional primitives),

• the element’s edges (one-dimensional primitives), and

• the element’s vertices (zero-dimensional primitives).

A tetrahedron, for example, consists of its interior volume, four faces, six edges, and
four vertices. The mesh nodes on each refinement level are assigned to one of these
primitives. Fig. 2.12 shows an example, for simplicity in 2D: a triangle that is refined
up to level two and the assignment of the mesh nodes to the triangle’s primitives.

Organizing the nodes into primitives separates the structured from the unstruc-
tured parts of a mesh. Observing the couplings of the elements’ nodes in Fig. 2.10 re-
veals that the nodes in the elements and on the edges are coupled to their neighbor-
ing nodes in a regular way. Only the nodes on the vertices have different numbers of

42

www.manaraa.com

2.4. HIERARCHICAL HYBRID GRIDS

0

2l +1

0 2l +1

· · ·
[0][0] [1][0] [2l +1][0]

[0][1] [2l][1]

r

c

Figure 2.13: Linear memory array for a triangle at refinement level l (here: l = 2). The
labels [r][c] indicate the mapping of the triangle’s nodes (left) to entries in the linear
memory array (right).

neighbors, depending on how many elements they are adjacent to. For HHG’s tetra-
hedral meshes, the same principle holds. The interior nodes of a tetrahedron always
have 14 neighbors, also the nodes on faces between two tetrahedra. The nodes on
boundary faces always have 11 neighbors. Only for the nodes on the edges and ver-
tices the number of neighbors is variable, because these primitives can be adjacent
to arbitrarily many elements.

This finding can be used to implement data structures that are beneficial for
the computational efficiency of the numerical algorithms. Fig. 2.13 shows how the
nodes in a triangle can be mapped to the entries of a linear memory array. The nodes
of any regularly refined triangle—independent of its shape—can be organized with
a row and column indexing scheme. The nodes’ values are then stored row-wise in
the memory array. Note that the memory array does not only contain the triangle’s
interior nodes, but also the nodes on the edges and vertices, although the numerical
algorithms update only the interior nodes. For a description of all the data structures
that are needed in HHG with uniform refinement, see [10]. For the implementation
of adaptive refinement, additional data structures were developed; they will be in-
troduced in Chapter 4.

By storing also the values on the triangle’s boundary nodes, the memory ar-
ray contains all values that are necessary for the algorithm to update the interior
nodes; it does not have to access memory arrays of other elements. The values on
the boundary are called ghost values. They have to be fetched from the primitive
that owns the corresponding nodes when they have been updated there. What is
not immediately visible in Fig. 2.13, because l is quite small: for larger values of l ,
the number of interior primitives dominates the number of ghost primitives, and
the rows become very long. Thus, a numerical algorithm should update the nodes
in row-wise order. Then the memory array is traversed almost completely linearly.
On current computer architectures, linear memory access is much faster than irreg-
ular access, because the computer assumes that the access is linear and reads ahead
data of the locations that follow the currently accessed one.

2.4.3 Programming languages and standards

For the software framework, the C++ programming language [43] is used. Programs
written in C++ are portable to all supercomputer host systems. The object-oriented
programming features of C++ allow for flexible and error-proof software engineer-
ing. The resulting programs are competitively fast, because well-optimizing compil-
ers exist for all important processor types. Since C++ is widely used in the software
engineering community, the obstacles for other scientists who want to start con-

43

www.manaraa.com

CHAPTER 2. BASICS

tributing to HHG are small.
Most computational kernels are implemented in FORTRAN-77 (for simplicity re-

ferred to as FORTRAN, below) and ANSI C [37, 27]. The historical reason for FORTRAN

is that on the Hitachi SR8000 computer, which was the first target architecture of
HHG, optimized FORTRAN programs yielded a much higher performance than op-
timized C/C++ programs. Recent, not yet published experiments indicate that on
current hardware HHG reaches the same performance with computational kernels
written in C.

For inter-process communication, HHG relies on the message passing interface
MPI standard [30], using the MPI libraries provided by the software infrastructure
on the host system. MPI is the leading standard for inter-process communication
on distributed-memory systems and is available on virtually all supercomputers.
Thread-level parallelism, e. g., via OpenMP [12], is not implemented in HHG. When
the development of HHG started, processors had at most four cores, and at that time
hardly any application that tried to mix MPI and thread-level communication had
any performance gain over using MPI only. Since HHG targets very large simula-
tions running on thousands of processors, providing a version using only thread-
level communication does not make sense for HHG, either. Currently, the number
of cores per processor is growing, though. Therefore, hybrid communication strate-
gies using both MPI and OpenMP may become necessary in the future.

2.4.4 Software architecture

The HHG library is organized into several components. Each of them consists of
several C++ classes.

• The central mesh classes store the mesh topology, handle the multigrid levels
and the adaptive mesh refinement.

• The primitive classes provide a class for every implemented finite element
type (currently, tetrahedral elements are implemented) and for their lower-
dimensional neighbors (faces, edges, vertices). They provide interfaces to rou-
tines that are specific for each primitive type, e. g., memory allocation, numer-
ical functions, and communication.

• The memory handling subsystem allocates and de-allocates the memory for
the variables and operators defined on the mesh. Every primitive type has a
corresponding memory handler that knows about the number of unknowns—
and, therefore, the memory demand—of the primitive, depending on the re-
finement level.

• The compute kernels, core functions for basic numerical operations like adding
variables or applying a differential operator, are implemented specifically for
each primitive type. They can easily be replaced by optimized versions for a
specific type of hardware.

• The communication subsystem handles the communication of data between
neighboring mesh primitives, for local memory transfers as well as for remote
communication.

• The finite element setup classes perform the numerical integration on the fi-
nite elements and take care of the discretization of differential operators (cur-
rently, the Laplace operator is implemented) for each finite element type.

44

www.manaraa.com

2.4. HIERARCHICAL HYBRID GRIDS

• A collection of algorithms performs high-level numerical operations with the
variables and operators defined on the mesh. The algorithms reach from basic
linear algebra like norms or vector sums to advanced multigrid like the full
approximation scheme or the full multigrid algorithm.

These building blocks are described in detail, below. The classes that are required
for adaptive mesh refinement and some other software components, e. g., the per-
formance analysis tools, are described in separate chapters. Note that the following
paragraphs and class diagrams do not intend to provide a complete description of
all classes, since that would not match the majority of the readers’ interest. Instead,
they shall show in a very condensed form how the HHG concepts are cast into soft-
ware.

The mesh classes

Fig. 2.14 gives an overview of the classes that are responsible for handling the fi-
nite element mesh topology. The central class of this compound—and of the whole
HHG library—is hhgMesh. It acts as a relay station for many other classes to inter-
act with each other; these classes have references to hhgMesh and can in this way
access other components of the library. hhgMesh itself does not contain any major
algorithms, it is mostly a storage space for references to other classes handling the fi-
nite element mesh and to other library components like the communication subsys-
tem. Its main attributes are references to the hhgPrimitiveStore class described
below and to the hhgMPIController class described later on in the communica-
tion subsystem part. The implementation of the hhgMesh class has methods, too,
of course, and many more attributes, but none of them are important in this com-
pact overview. Also for the other classes only the necessary members are depicted,
in order to keep the figures readable.

Mesh primitives are not stored in hhgMesh, directly, but in a registry with refer-
ences to all primitives on all refinement levels, called hhgPrimitiveStore. It pro-
vides two ways of accessing mesh primitives, matching the different needs of the
algorithms working with the mesh. The first possibility is to access a mesh primitive
by its global identifying number (ID). The function getPrimitive(...) takes the
refinement level, the primitive dimension, and the primitive ID as arguments and
returns a pointer to the requested primitive. It uses the attribute allPrims, which is
implemented with vectors and maps from the C++ standard template library (STL).
The second possibility is to access groups of primitives. Therefore, the type hhg-
PrimitiveGroup is defined; a variable of this type can have one of the following
values:

• hhgPgWorkingSet: primitives on which the solution has to be computed,

• hhgPgDirichletBndry: primitives on the Dirichlet boundary,

• hhgPgNeumannBndry: primitives on the Neumann boundary,

• hhgPgProcBndry: primitives that are also present on another process.

Primitives are automatically added to these groups when the mesh is set up in the
beginning. They are stored in the attribute grpPrims, which is implemented with
nested STL vectors.

45

www.manaraa.com

CHAPTER 2. BASICS

h
h

gP
rim

itive
h

h
gP

rim
itiveSet

h
h

gP
rim

itiveSet::iterato
r

b
egin

(in
td

im
)

h
h

gP
rim

itiveSet::iterato
r

en
d

(in
td

im
)

h
h

gP
rim

itiveSto
re

[lvl][d
im

][id
]→

p
rim

allP
rim

s
[lvl][d

im
][grp

][p
rim

]grp
P

rim
s

b
o

o
lad

d
P

rim
itive

(in
tlvl,h

h
gP

rim
itiveG

ro
u

p
grp,h

h
gP

rim
itive

&
p

rm
)

h
h

gP
rim

itive*
getP

rim
itive

(in
tlvl,in

td
im

,in
tid

)
h

h
gP

rim
itiveSetselectG

ro
u

p
s

(h
h

gP
rim

itiveG
ro

u
p

grp,in
tlvl)

h
h

gM
esh

h
h

gP
rim

itiveSto
re

&
p

rim
Sto

re
h

h
gM

P
IC

o
n

tro
ller

&
m

p
iC

trl
in

tn
V

ar
in

tn
O

p
r

h
h

gM
P

IC
on

troller

vo
id

u
p

d
ateD

M
P

D
ep

s
(in

tvarId
x,in

tlvl,in
td

im
)

h
h

gV
ariab

le
in

tid
h

h
gM

esh
&

m
esh

A
ll

W
o

rkin
gSet

D
irich

letB
o

u
n

d
ary

N
eu

m
an

n
B

o
u

n
d

ary
P

ro
cessB

o
u

n
d

ary

«en
u

m
eratio

n
»

h
h

gP
rim

itiveG
ro

u
p

F
igu

re
2.14:T

h
e

m
esh

classes.

46

www.manaraa.com

2.4. HIERARCHICAL HYBRID GRIDS

Listing 2.1: Iteration over Dirichlet and Neumann boundary primitives on level 5.

hhgPrimitiveStore pstore;
hhgPrimitiveSet pset = pstore.selectGroups

(DirichletBoundary|NeumannBoundary, 5);
for (dim_t d=0; d<=3; d++) {

for (pset::iterator it=pset.begin(d), ie=pset.end(d);
it!=ie; it++) {

// Work on primitive *it.
}

}

The function selectGroups(...) can be used to select one or more groups on a
certain level. The selection is returned as an instance of the class hhgPrimitiveSet,
which hides the data structures in hhgPrimitiveStore. hhgPrimitiveSet pro-
vides access to the selected primitives via an STL-conforming iterator; the functions
begin(dim) and end(dim) return iterators delimiting the user’s selection. This con-
cept is most easily explained with the example code in Listing 2.1, which accesses all
primitives on the Dirichlet and Neumann boundaries on level 5.

The mesh primitives

The finite element mesh on the coarsest level is made up of mesh primitives that can
be refined in a structured way to create the level hierarchy needed in multigrid com-
puting. The dimension of the finite element mesh determines the primitive types
used in the construction of the mesh. Each of the primitive types described in Sec-
tion 2.4.2 is represented by a C++ class. All the primitive classes are derived—directly,
or via other classes—from a common abstract class, hhgPrimitive (see Fig. 2.15).
This class contains all attributes and functions that are independent of the primi-
tive dimension or do not need to be tuned to the primitive’s dimension. The class,
as well as the derived classes, is templated with the parameter T, which defines the
data type of the numerical functions. Therefore, HHG can be instantiated for sim-
ulations with different numerical precision (e. g., float or double) with relatively
low effort.

Every instance of hhgPrimitive can be identified uniquely by the attributes
dim and id. Every primitive has pointers to its neighbor primitives in the neigh-
bors data structure. hhgPrimitive keeps track of memory allocated for variables
on the mesh in the memArrs (“memory arrays”) data structure; pointers into MPI
buffer memory are stored in mpiDeps (“MPI dependencies”). The memory handling
is realized via the class hhgVariableMemory, which will be explained below.

Four child classes are derived from hhgPrimitive: hhgVertex, hhgEdge, hhg-
Face, and hhgElement. They are the base classes for the zero-, one-, two-, and
three-dimensional primitive classes and contain attributes and functions that are
independent of the global mesh dimension but dependent on of the primitive di-
mension. The classes are still abstract, except for hhgVertex, whose implementa-
tion is the same for meshes in all dimensions. In the third and final tier of classes,
the primitive types are implemented specifically for each primitive dimension and
mesh dimension. For three-dimensional meshes, these are hhgVertex, hhgVol-

47

www.manaraa.com

CHAPTER 2. BASICS

h
h

gLin
earM

em
D

ep
*[][][][]m

p
iD

ep
s

h
h

gV
ariab

leM
em

o
ry*[]m

em
A

rrs

h
h

gP
rim

itive

vo
id

ad
d

N
eigh

b
o

r
(in

td
im

,h
h

gP
rim

itive
*n

eigh
b

o
r)

h
h

gP
rim

itive*[]&
getN

eigh
b

o
rs

(in
td

im
)

in
tgetM

em
R

efId
(in

td
im

,h
h

gP
rim

itive
&

p
rim

)

virtu
alvo

id
ad

d
V

ariab
leM

em
o

ry
(in

tvarId
x)

virtu
alvo

id
ad

d
Level(in

tvarId
x,in

tlvl)
vo

id
reserveM

P
IB

u
ffers

(in
tlvl[,in

tb
u

fSz])
vo

id
setu

p
Lo

calC
o

p
iers

(in
tvarId

x,in
tlvl)

virtu
alT

eu
cN

o
rm

(in
tvarId

x,in
tlvl)

vo
id

co
p

y{To,Fro
m

}Lo
cal(in

tvarId
x,in

tlevel,h
h

gC
o

p
yTyp

e
typ

e)
vo

id
u

p
d

D
M

P
D

ep
s

(in
tvarId

x,in
tlvl,h

h
gM

P
IC

o
n

n
Typ

e
typ

e,h
h

gM
P

IC
o

n
n

D
ir

d
ir)

in
td

im
in

tid
h

h
gP

rim
itive*[]n

eigh
b

o
rs

h
h

gV
ertex

h
h

gE
d

ge
h

h
gFace

h
h

gE
lem

en
t

h
h

gVo
lu

m
eE

d
ge

h
h

gTrian
gleFace

h
h

gLin
earM

em
D

ep

h
h

gV
ariableM

em
ory

«en
u

m
eration

»
h

h
gM

P
IC

on
n

D
ir

«en
u

m
eration

»
h

h
gM

P
IC

on
n

Typ
e

«en
u

m
eration

»
h

h
gC

op
yTyp

e

T
eu

cN
o

rm
(...)

T
eu

cN
o

rm
(...)

T
eu

cN
o

rm
(...)

h
h

gQ
u

ad
rilateralFace

T
eu

cN
o

rm
(...)

h
h

gTetrah
ed

ro
n

T
eu

cN
o

rm
(...)

h
h

gH
exah

ed
ro

n

T
eu

cN
o

rm
(...)

typ
en

am
e

T

T
T

T
T

T
T

T
T

T

F
igu

re
2.15:T

h
e

p
rim

itive
classes

w
ith

selectattrib
u

tes
an

d
fu

n
ctio

n
s.

48

www.manaraa.com

2.4. HIERARCHICAL HYBRID GRIDS

umeEdge, hhgTriangleFace, hhgQuadrilateralFace, hhgTetrahedron, and hhg-
Hexahedron. HHG has currently only implemented full support of 3D meshes; for
2D meshes, another set of primitive classes—analogous to the existing ones—would
have to be implemented. Note that hexahedral elements and quadrilateral faces are
only rudimentarily implemented in the current version of HHG; the diagram in-
cludes them, anyway, to show how they fit into the class hierarchy in principle.

Memory handling

The class hhgVariableMemory is the central class when it comes to handling phys-
ical memory. For each primitive type, it has a derived class that knows how to ef-
ficiently map the primitive type’s individual data structures into arrays in physical
memory. The classes are shown in Fig. 2.16. They reference specialized classes for
copying data between memory arrays; these will be explained below.

The compute kernels

The kernels of the primitives’ numerical functions (like eucNorm in Fig. 2.15) are
outsourced to simple C or FORTRAN functions that do not use any advanced lan-
guage features like object-oriented programming. This allows the compiler to create
highly optimized machine code. The strict separation from the bulk of the library
code also allows for easy replacement of the numerical kernels by versions tuned
to special hardware. As a tribute to C/FORTRAN mixed-language programming, data
is exchanged between the primitives’ numerical functions and the compute kernels
via pointers only.

Local and remote communication

The term local communication subsumes all data transfers between primitives with-
in the same process, i. e., when primitives can access each other’s physical mem-
ory addresses. For every combination of two primitive types there is an abstract
class hhgP1P2Copier, where P1 is the name of the higher-dimensional primitive
type, and P2 the name of the lower-dimensional type. These classes provide the vir-
tual functions copyToOther and copyFromOther for data transfer to and from the
neighbor, from the view-point of the higher-dimensional primitive.

Each of the abstract classes hhgP1P2Copier has several realizations, one for
each type of adjacency that can occur between two primitives of types P1 and P2.
Each of these concrete classes implements the data transfer for a specific align-
ment of two primitives in the most efficient way. Upon mesh setup, an appropri-
ate subclass of hhgP1P2Copier is instantiated for every adjacency of two primi-
tives. When one of the higher-dimensional primitives’ copy{To,From}Local func-
tions (see Fig. 2.15) is called, it calls, for each lower-dimensional neighbor, the cor-
responding copier’s copy{To,From}Other function.

An example is shown in Fig. 2.16. The abstract base class, hhgVEVertexCopier,
is used for an adjacency between primitives of type hhgVolumeEdge and hhgVer-
tex. The vertex can either be attached to the front or the rear end of the edge; de-
pending on that, the copy functions have to select the correct entry in the edge mem-
ory array. Therefore, hhgVEVertexCopier has two realizations, one for each of the
adjacency types. Fig. 2.17 shows which data hhgVEVertexZero and hhgVEVertex-
One copy between an edge and its adjacent vertices.

49

www.manaraa.com

CHAPTER 2. BASICS

h
h

gV
E

VertexC
o

p
ier

virtu
alvo

id
co

p
yTo

O
th

er
(in

tlvl,in
tco

lu
m

n
)

virtu
alvo

id
co

p
yFro

m
O

th
er

(in
tlvl,in

tco
lu

m
n

)

typ
en

am
e

T

virtu
alvo

id
co

p
yTo

O
th

er
(in

tlvl)
virtu

alvo
id

co
p

yFro
m

O
th

er
(in

tlvl)

h
h

gV
E

VertexZ
ero

vo
id

co
p

yTo
O

th
er

(in
tlvl,in

tco
l)

vo
id

co
p

yFro
m

O
th

er
(in

tlvl,in
tco

l)

h
h

gV
E

VertexO
n

e

vo
id

co
p

yTo
O

th
er

(in
tlvl,in

tco
l)

vo
id

co
p

yFro
m

O
th

er
(in

tlvl,in
tco

l)

h
h

gV
ariab

leM
em

o
ry

h
h

gVertexM
em

o
ryA

rray

vo
id

co
p

yTo
O

th
er

(in
tlvl)

vo
id

co
p

yFro
m

O
th

er
(in

tlvl)

h
h

gVo
lu

m
eE

d
geM

em
o

ryA
rray

h
h

gV
E

VertexC
o

p
ier[]vertexC

o
p

iers

h
h

gTrian
gleFaceM

em
o

ryA
rray

h
h

gTetrah
ed

ro
n

M
em

o
ryA

rray

T

TT

T

TT

vo
id

co
p

yTo
O

th
er

(in
tlvl)

vo
id

co
p

yFro
m

O
th

er
(in

tlvl)

h
h

gFaceM
em

o
ryA

rray
h

h
gFaceE

d
geC

o
p

ier[]ed
geC

o
p

iers

T

h
h

gFaceVertexC
o

p
ier[]vertexC

o
p

iers

vo
id

co
p

yTo
O

th
er

(in
tlvl)

vo
id

co
p

yFro
m

O
th

er
(in

tlvl)

h
h

gE
lem

en
tM

em
o

ryA
rray

h
h

gE
lem

en
tE

d
geC

o
p

ier[]ed
geC

o
p

iers

T

h
h

gE
lem

en
tVertexC

o
p

ier[]vertexC
o

p
iers

h
h

gE
lem

en
tFaceC

o
p

ier[]faceC
o

p
iers

F
igu

re
2.16:T

h
e

classes
fo

r
h

an
d

lin
g

p
h

ysicalm
em

o
ry

an
d

fo
r

co
p

yin
g

d
ata

b
etw

een
p

rim
itives.

50

www.manaraa.com

2.4. HIERARCHICAL HYBRID GRIDS

To (col=0)

To (col=1)

From (col=0)

From (col=1)

To (col=1)

To (col=0)

From (col=1)

From (col=0)

hhgVEVertexZero

hhgVEVertexOne

0
1
2
3

n

...

edge memory array index

Figure 2.17: The semantics of the copy functions.

The edge-vertex example has been chosen for its simplicity: only two sub-classes
are necessary to cover all adjacency cases. For higher-dimensional primitives, adja-
cent primitives are not only characterized by their location but also by their orienta-
tion. For an edge at a triangular face, for example, there are three positions the edge
can have, and, for each position, there are two possible orientations. To cover all the
cases for this combination of primitive types, six classes and, consequently, twelve
different copy functions have to be implemented.

If two primitives that do not reside in the same process, i. e., whose physical
memory addresses belong to different processes, need to exchange data, remote
communication is necessary. In the current HHG version, this type of communica-
tion uses the MPI standard, but the modularity of the implementation would allow
switching to a different communication paradigm, e. g., OpenMP or MPI mixed with
OpenMP, without too much effort.

The remote communication infrastructure uses MPI, but it also re-uses the local
communication infrastructure. This has the advantage that the functions perform-
ing the actual data transfers between processes are comparably straightforward,
thus, and easy to debug—an extremely valuable asset of software that has to run on
thousands of processes in parallel. The re-use of the local communication functions
is made possible by using ghost primitives.

The central class of the remote communication infrastructure is hhgMPICon-
troller (see Fig. 2.18). A single instance of this class exists in each process; it can
be obtained via the instance function. The hhgMPIController instance contains
a set of hhgMPIChannel objects, one for each process with which data has to be ex-
changed The channels contain instances of the hhgMPIMemoryArray class. A chan-
nel has one hhgMPIMemoryArray instance for every mesh variable (i. e., for an in-
stance of hhgVariable, see Fig. 2.19). hhgMPIMemoryArray stores all the data that
has to be communicated with the channel’s corresponding process in the data vec-
tor, where every vector entry corresponds to a multigrid level. The data itself is stored
in a contiguous array in physical memory. The array contains the ghost values from
all primitives adjacent to the channel’s process. This way, only one message between
a pair of processes is required to communicate all ghost values of a specific level.

Remote communication is initiated by calling hhgMesh::updDMPDeps (“update
distributed memory processing dependencies”) function for a certain level. This
function makes sure that all ghost values in hhgMPIMemoryArray’s data field of that
level are up to date by calling hhgPrimitive::updDMPDeps of every primitive on a

51

www.manaraa.com

CHAPTER 2. BASICS

MPI

MPI_Isend
MPI_Irecv
MPI_Waitall

MPI_Request

void*[] data
hhgMPIMemoryArray

void update (int lvl, MPI_Request*[] requests
[, hhgMPIConnType type] [, int dim])

hhgMPIChannel

typename Tvoid addMemArr (int varIdx)
void update (int varIdx, int lvl, MPI_Request*[] requests
[, hhgMPIConnType type] [, int dim])

hhgMPIChannel*[] channels
hhgMPIController

typename Tvoid addMemArr (int varIdx)
void update (int varIdx, int lvl
[, hhgMPIConnType type] [, int dim])

hhgMesh

static hhgMPIController& instance ()

int toRank
hhgMPIMemoryArray*[] memArrs

Figure 2.18: Remote communication classes.

process boundary. Then, hhgMPIController::update is called, which in turn calls
update for all channels. The channels pass the update call on to their hhgMPIMemo-
ryArray objects, which initiate immediate send and receive (MPI_Isend and MPI_
Irecv) operations. After all MPI memory arrays have initiated the send and receive
operations, hhgMPIController::update calls MPI_Waitall to wait for the com-
pletion of the data transfers.

Note that the remote communication classes do not have type-name template
parameters like, e. g., the primitive classes (see Fig. 2.15), but the data is stored in
pointers of type void. Knowing about the type of the communicated data is not
necessary, because the communication functions in the MPI standard only deal with
non-typed pointers. The advantage for the HHG implementation is that it gets much
simpler, because a single hhgMPIChannel instance can handle the communication
of ghost values from mesh variables with different data types. Type-safety at com-
pile-time is still ensured, because every hhgMPIMemoryArray instance is generated
via the hhgMPIController::addMemoryArray function, which is templated with
the data type.

Finite element setup

The finite element setup phase comprises the assembly of the operator stencils and
the initialization of the load vector. Therefore, the integrals derived in Section 2.2.7
have to be computed. The HHG classes involved with finite element setup are shown
in Fig. 2.19.

The class hhgOperator is the generic class for all numerical operators in HHG. A
specific operator is obtained by instantiating the concrete class that corresponds to
the differential operator in the analytic equation. The only operator currently imple-
mented in HHG is hhgDiffusionOperator, which resembles the Laplace operator
(also known as “diffusion operator”). The operator assembly is initiated by hhgOp-

52

www.manaraa.com

2.4. HIERARCHICAL HYBRID GRIDS

erator::setup. For every finite element in the input mesh the setup function calls
a compute appropriate for the type of the element. Currently implemented, and
shown in Fig. 2.19, is hhgTetrahedronStencil::compute. The method uses the
virtual method hhgTetrahedronOperator::matrix to obtain a stiffness matrix on
the coarsest level, which is distributed to the stencils of the element’s mesh points
on the coarsest level and—multiplied with an appropriate scaling factor—on the
finer levels. Depending on which concrete operator class has been instantiated, the
matrix method of the appropriate concrete class of hhgTetrahedronOperator is
called; e. g., hhgTetrahedronDiffusion corresponds to hhgDiffusionOperator.
The stiffness matrix is computed according to (2.24), depending on the coordinates
of the element’s corners. The coordinates are passed as arguments in the hhgPoint
format, which will not be explained in detail, here. The stiffness matrix is returned
in an hhgTetStiffnessMatrix object, a simple container for the matrix entries,
which will not be explained further, either.

The classes and functions employed in the initialization of the load vector are
shown in the lower part of Fig. 2.19. The setupLoad function of the FinitElements
class, which is located in the hhgLinAlg namespace, is used to compute the load
vector on a certain multigrid level (lvl) and store it in the variable var. Analogous to
the hhgOperator::setup function, it employs different compute functions specifi-
cally implemented for the different element types to compute the integral (2.23). The
compute functions (currently implemented an depicted in Fig. 2.19: hhgTetrahe-
dronLoad::compute) compute the integral for every element on the desired level,
using hhgVolumeFunction to obtain the (analytic) load function values at the in-
tegration points p. The load function is actually an instance of a sub-class of the
abstract hhgVolumeFunction, which must be provided by the user in the init-
Fun attribute of the variable var before calling setupLoad. As a generic load func-
tion, hhgStringVolumeFunction can be used, which is able to evaluate a variety of
mathematical equations, but which is rather slow. New derived classes of hhgVol-
umeFunction that evaluate the load function of the user’s specific mathematical
models can be implemented quite easily even with basic programming skills.

Algorithms

The numerical algorithms provided for the HHG user are organized in the C++ name-
space hhgLinAlg. The namespace contains three classes: hhgLinAlg::Basic, the
already mentioned hhgLinAlg::FiniteElements, and hhgLinAlg::Multigrid.

• Basic comprises basic linear algebra algorithms for

– taking vector norms,

– copying variables,

– scaling, adding, and subtracting variables,

– applying operators to variables.

• FiniteElements handles finite-elements-related tasks. Currently, the only
function in this class is setupLoad.

• Multigrid contains all the multigrid algorithms, namely

– smoothing,

53

www.manaraa.com

CHAPTER 2. BASICS

hhgTetrahedronOperator

hhgTetrahedronDiffusion

hhgTetrahedron
T

hhgTetrahedronStencil
typename T

hhgOperator

hhgTetrahedronLoad
typename T

hhgVolumeFunction
T

hhgLinAlg::FiniteElements

void setup ()

T

T

virtual T operator() (hhgPoint& p)

hhgPoint
T

hhgTetStiffnessMatrix
T

hhgStringVolumeFunction
T

T operator() (hhgPoint& p)

void compute (hhgTetrahedron& element, int oprIdx,
hhgTetrahedronOperator& operator)

virtual hhgTetStiffnessMatrix* matrix
(hhgTetrahedron& element, hhgPoint[] coord)

T scalingFactor ()

hhgTetStiffnessMatrix* matrix
(hhgTetrahedron& element, hhgPoint[] coord)

T scalingFactor ()

void compute
(hhgTetrahedron& el, int lvl, int varIdx,
hhgVolumeFunction& loadFun)

static void setupLoad
(hhgScalarVariable& var,
int lvl)

hhgDiffusionOperator

hhgScalarVariable
hhgVolumeFunction* initFun

T = double

hhgVariable
T

Figure 2.19: Finite element setup classes.

54

www.manaraa.com

2.4. HIERARCHICAL HYBRID GRIDS

– residual computation,

– inter-grid transfer operations,

– multigrid cycles using the correction and full approximation schemes,

– the full multigrid algorithm.

The algorithms are provided with an hhgMesh, an hhgOperator, and one or
more—depending on the algorithm—instances of hhgVariable. Besides that, sev-
eral other parameters are usually necessary to define the algorithm’s behavior. An
example showing the usage of the fullMG algorithm is presented in Section 2.4.6.

2.4.5 Changes implemented within the scope of this thesis

The work with HHG that lead to the results presented in this thesis brought many
changes to HHG’s implementation. The major ones are summarized below.

• Additional multigrid algorithms were implemented, among them FAS and full
multigrid.

• HHG’s build system was migrated to SCons in order to support more super-
computer systems (see Chapter 3).

• For evaluating and optimizing HHG’s performance on different supercomput-
ers, the code was instrumented with a new timing framework (see Chapter 3).

• Adaptive refinement was implemented (see Chapter 4). This required changes
in HHG’s architecture, e. g., for supporting variables with integer data and new
primitive types, the hyperplanes.

• An algorithm for optimizing the multigrid cycle structure at run-time was im-
plemented, including mechanisms for persisting optimization data (see Chap-
ter 5) between multiple program runs.

2.4.6 Usage example

Listing 2.2 shows a complete example program demonstrating the usage of the HHG
library. The program executes the full multigrid algorithm with the full approxima-
tion scheme and a Gauss-Seidel smoother on three multigrid levels. The code is de-
scribed in the following paragraphs.

All programs using HHG must include the hhg.h header (line 1). After the MPI
initialization, the minimum and maximum multigrid levels are set in line 7.

Then, a 3D volume mesh is created and initialized. The initialization includes
passing the name of the file that contains the input finite element mesh (“exam-
ple.ugm”, line 15) and setting a mesh partitioner (line 17). The partitioner, which
has the task of assigning the finite elements of the input mesh to the available MPI
processes, is, in this example, a very simple one (uTestPartitioner), which dis-
tributes the elements equally over the processes in the order of their IDs. Concluding
the initialization phase, a refiner is added to the mesh. In conjunction with adaptive
mesh refinement (Chapter 4), hhgRefiner will be explained in more detail; for now,
hhgUniformRefiner is used, which refines all elements to the same level.

55

www.manaraa.com

CHAPTER 2. BASICS

After the mesh has been initialized, variables and operators can be created. The
full multigrid algorithm needs three variables: the unknowns vector (unk), the right-
hand side (rhs), and the residual (res). All variables are created as hhgScalarVari-
able objects. Both the unknowns and the right-hand side get an initialization func-
tion, but HHG’s usage of these functions is different for the two variables. The ini-
tialization function passed to unk (line 27) will be used by the library to initialize the
Dirichlet boundaries. The initialization function of rhs (line 31), on the other hand,
will be used to compute the load vector as explained above and shown in Fig. 2.19.
The Dirichlet boundaries are initialized with the function u(x, y, z) = x·y ·z, the right-
hand side is set to a constant value of 0. In combination with the diffusion operator
created in line 35, the PDE that will be solved is

∆u(x, y, z) = 0 inΩwith u(x, y, z) = x · y · z on ∂Ω ,

where ∂Ω is the Dirichlet boundary ofΩ.
Some more parameters for the full multigrid algorithm and the underlying multi-

grid cycles are set in lines 37–48. The number of multigrid cycles performed by the
full multigrid algorithm on each level (cycles) is set to 1. The full approximation
scheme (fas) is activated. The Gauss-Seidel smoother (GS) is specified, which does
not take extra arguments (therefore, smootherArgs is not needed). No particular
coarse-grid solver is selected, thus the Gauss-Seidel smoother will be used as coarse-
grid solver by HHG. The number of smoothing steps on the coarse mesh is set to
−10, which means, that after every 10 smoothing steps the residual is checked, un-
til convergence is reached. The number pre- and post-smoothing steps on the finer
meshes is set to 2, each. Multigrid cycle optimization (which will be covered in Chap-
ter 5), is switched off.

The unknowns vector has to be passed to the full multigrid algorithm in an STL
vector container, because some algorithms (e. g., the Jacobi smoother) need more
than one unknowns vector. This is taken care of in line 50. Finally, the variable res-
max is defined, which will contain the maximal residual value upon return from the
fullMG function. This function is in the Multigrid class of the hhgLinAlg package;
it uses the mesh variables, the operator, and the other parameters to execute a full
multigrid algorithm. When the algorithm is finished, the unknowns vector is shown
with the hhgVariable::print function.

Listing 2.2: HHG usage example.

1 #include <hhg.h>
2
3 int main (int argc, char *argv[])
4 {
5 MPI_Init (&argc, &argv);
6
7 lvl_t lvlMin = 2, lvlMax = 4;
8
9 hhgMesh *mesh = new hhgVolumeMesh;

10
11 mesh->setCoarsestLevel (lvlMin);
12 mesh->setFinestLevel (lvlMax);
13
14 mesh->setGeometryInterface

56

www.manaraa.com

2.4. HIERARCHICAL HYBRID GRIDS

15 (new hhgUGLiInterface ("example.ugm"));
16
17 mesh->setPartitioner (new uTestPartitioner);
18
19 mesh->initialize ();
20
21 hhgRefiner *refiner = new hhgUniformRefiner (*mesh);
22 refiner->initialize ();
23 mesh->setRefiner (refiner);
24
25 hhgScalarVariable unk ("unk", *mesh, lvlMin, lvlMax);
26 unk.setInitFunction
27 (new hhgStringVolumeFunction<double> ("x*y*z"));
28
29 hhgScalarVariable rhs ("rhs", *mesh, lvlMin, lvlMax);
30 rhs.setInitFunction
31 (new hhgConstantVolumeFunction<double> (0.));
32
33 hhgScalarVariable res ("res", *mesh, lvlMin, lvlMax);
34
35 hhgOperator *opr = new hhgDiffusionOperator (*mesh, 0, lvlMax);
36
37 unsigned cycles = 1;
38 bool fas = true;
39
40 hhgSmoother smoother = GS;
41 double *smootherArgs = 0;
42
43 void *csolver = 0;
44 int nuC = -10;
45
46 int nu1 = 2, nu2 = 2;
47
48 bool cycleopt = false;
49
50 std::vector<hhgScalarVariable*> unks;
51 unks.push_back (&unk);
52 double resmax;
53
54 hhgLinAlg::Multigrid::fullMG
55 (unks, rhs, res, *opr, csolver, nuC, nu1, nu2, lvlMin, lvlMax,
56 lvlMax, cycleopt, cycles, smoother, smootherArgs, fas,
57 &resmax, 0);
58
59 unk.print (2, 4, hhgPrintBoundary);
60
61 MPI_Finalize ();
62 return 0;
63 }

57

www.manaraa.com

CHAPTER 2. BASICS

58

www.manaraa.com

Chapter 3

Towards petaflop performance

Contents
3.1 Introduction . 59

3.2 Software engineering . 60

3.2.1 Available build systems . 61

3.2.2 Adapting SCons for HHG . 61

3.3 Performance analysis . 64

3.3.1 State of the art . 65

3.3.2 HHG’s performance analysis toolkit 66

3.4 Performance of HHG on different architectures 69

3.4.1 Architectures . 69

3.4.2 Measurement setup for scaling tests 72

3.4.3 Results . 75

3.1 Introduction

The design of HHG has started in 2002 with the HLRB I computer in mind. HLRB I
was the first national supercomputer operated by the Leibniz Rechenzentrum (LRZ)
in Munich, Germany. The Hitachi SR8000 started serving supercomputing demands
of research groups throughout Germany in the year 2000. Upon installation, HLRB I
ranked fifth on the June 2000 TOP500 list of supercomputers1 with a Linpack perfor-
mance of 1.0 TFlop/s. HHG proved to scale very well on this system, which had 1344
CPU cores in total [10].

At the time of this writing, over 40 supercomputers are available that have a Lin-
pack performance of 1 PFlop/sor more, and the number of CPU cores in the largest
computers is passing a million2. The exponentially increasing performance of su-
percomputers can only be exploited by software that can cope with this enormous
degree of parallelism, which is increasing exponentially, as well. How does HHG
cope with this development? Does it still scale well on such large numbers of CPUs?
Section 3.4 answers these questions with performance measurements on computers
with up to 16384 CPU cores.

1http://top500.org/list/2000/06
2http://top500.org/list/2014/06

59

http://top500.org/list/2000/06
http://top500.org/list/2014/06

www.manaraa.com

CHAPTER 3. TOWARDS PETAFLOP PERFORMANCE

A performance measurement can be as simple as taking the run-time of a pro-
gram, from start to finish. If the performance is not as good as expected, however, the
software engineer needs to perform more detailed measurements in order to find
the bottleneck. Massively parallel programs provide a special challenge, here, be-
cause if one process in thousands takes longer, it will slow down all other processes.
Therefore, analyzing the performance of software for high performance computing
(HPC) requires special tools. The tool employed to analyze HHG’s performance for
this thesis is presented, along with some other state of the art tools, in Section 3.3.

Installing software on supercomputers is another task that requires special tools.
These computers usually have special hardware for which the software needs to be
tuned, and the operating system and software tools may differ significantly from
what is standard on personal computers. HHG’s build system proved to make the
installation on various different supercomputers very convenient. Section 3.2 de-
scribes the key factors of a build system that is well-suited for HPC software.

3.2 Software engineering

HPC software is required to be portable across different computer architectures and
operating systems. For example, we observe a much larger variety in operating sys-
tems than in the segment of workstation computers. The requirements for the porta-
bility of HPC software are different from those of workstation software, though. As
an example, examine the task of installing the software on the computer, one among
many aspects of portable software engineering.

The installation of workstation software, like office applications, mathematical
toolkits for scientists, etc., has to be entirely automatized, because the distributor
cannot assume much about the users’ skills in dealing with computers and oper-
ating systems. Therefore, all the parameters of the host system, like installation lo-
cation and system libraries, have to be detected automatically. On HPC systems, in
contrast, it is often hard—if not impossible—to determine all these parameters au-
tomatically. Usually, automatism at that point is not even desired by the user. Take
the choice of the compiler as an example. HPC systems usually offer several different
compilers. The users will want to choose the correct compiler themselves instead
and even experiment with different choices.

Another aspect in which workstation and HPC software differ is configurability.
Behavior and range of features of workstation programs are rather fixed. They pro-
vide all their features to all users, may the individual user need them or not, and in
these precincts that is not even a bad strategy. In the HPC environment, however,
configuring an application one or the other way can have a large impact on its per-
formance. Should the software perform error checks? That may be necessary, but
it will slow down the program. Should it use shared- or distributed-memory paral-
lelism, or a combination of both? That does not only depend on the hardware, and
blindly using both may make the program run slower than including only what is
necessary.

To simplify the process of building and installing large software packages, which
is equally important for programmers and users, special tools have been developed.
These tools, denoted build systems in this thesis, have to meet the above require-
ments, and many others, in order to be useful. The most used build systems are de-
scribed in Section 3.2.1. They have all been designed with the task of building work-
station software in mind. Therefore, they are not perfect for building HPC software.

60

www.manaraa.com

3.2. SOFTWARE ENGINEERING

Section 3.2.2 presents a build system designed especially for HPC applications.

3.2.1 Available build systems

The most common build system is the software suite consisting of autoconf, au-
tomake, and libtool, which are commonly subsumed under the term Autotools [21].
For the sake of simplicity, this toolkit will be referred to as autoconf in this thesis.
Two more build systems which are quite popular are CMake and SCons [34, 17].

The Autotools suite has become the quasi-standard build system, and it was ini-
tially also used for HHG. It is widely used also in HPC applications. Programmers
and users can expect it to be available on the login nodes of any compute server.
Therefore, it is a safe bet for developers of new software to stick to the Autotools.
The toolkit has built-in support for many standard tasks. The output is a description,
the so-called Makefile, that can be used by the make3 tool to compile the source-
code into an executable. That being said, creating a build-system with functional-
ity deviating from the standard tasks that were thought of by the developers of the
Autotools is cumbersome. Extensions can be implemented as macros in the M44

language, which has a rather restricted functionality. For most tasks that require in-
teraction with the operating system, external tools—which may not be available on
all computers—have to be started, which makes it hard to create a build process that
is portable onto various operating systems and computer architectures.

The CMake build system is implemented in C++. It defines its own language for
describing the build process. Like for the Autotools, the output is a Makefile. CMake
is a relatively new build system, therefore it is not as widely-spread than the Auto-
tools. If developers use CMake for their software projects, they have to consider that
the users may not be able to immediately install the software on their computers,
but may first have to install CMake.

SCons, the build system used by HHG, is implemented in the programming lan-
guage Python5. Python has built-in support for virtually any task related to inter-
action with the operating-system, so it is not necessary to resort to external tools
for implementing special features of the build system. Like CMake, Scons is much
newer than the Autotools, and still under development. Therefore, not as many stan-
dard tests for libraries, operating system parameters, etc., as in the Autotools are im-
plemented, yet. Another consequence is that, like for CMake, the user of an HPC
system cannot expect to find an SCons installation readily available on the login
nodes.

3.2.2 Adapting SCons for HHG

The preceding paragraphs have already given an idea why SCons might be prefer-
able for building scientific software, but some disadvantages of SCons have been
mentioned, too. Thus, it is necessary to clearly point out the arguments for switch-
ing from HHG’s existing build scripts to SCons.

Installing HHG on the JUGENE supercomputer [28] made clear that a high per-
formance file system does not necessarily have to fulfill all the properties one would
naively affiliate with the term “high performance”. The GPFS file system is designed
for fast throughput of very large files on parallel computers, but it does not handle

3http://www.gnu.org/software/make/
4http://www.gnu.org/software/m4/
5http://www.python.org/

61

http://www.gnu.org/software/make/
http://www.gnu.org/software/m4/
http://www.python.org/

www.manaraa.com

CHAPTER 3. TOWARDS PETAFLOP PERFORMANCE

the creation of many small files in short time very well. The latter is exactly what a
build system attempts to do when running all the checks. It creates a small test pro-
gram and tries to execute it. This is done for, usually, dozens of checks. Because of
this, on JUGENE the run time of the autoconf script was around half an hour instead
of, as usual, a few minutes.

Another problem with these checks is that they would ideally have to be run on
the compute nodes of the HPC system, but not on the login nodes. Hardware and
operating system are often entirely different on the login and compute nodes. Thus,
checking for a certain property a the login node is useless; all the checks would have
to be submitted to the computer’s job queuing system in order to be run on the
compute nodes, which would delay the configuration process even more. These dif-
ficulties with the automated checks suggest to abstain from them entirely. Not rely-
ing on them has the additional advantage of becoming independent from autoconf.
The aforementioned disadvantage of SCons, that it does not have as many standard
checks as autoconf, is not important, any more.

Now that we are free in the choice of our build system, SCons wins for mainly
one argument: Python. Being implemented completely in Python, SCons can easily
be extended using that powerful language. Build scripts for scientific software need
many features that are not already available in the standard portfolio of the build
systems. For this application domain, simple and powerful extension mechanisms
are an invaluable asset of a build system.

Besides all the theoretical arguments for SCons that have been mentioned, the
last, but not least important one is practical experience. All three of the considered
build systems have been used in large software projects at the System Simulation
Group in Erlangen. SCons is the one that users were most satisfied with, for the
above arguments, but also for the small details that are important in day-to-day
work.

The two characteristic properties of the HHG build system are, first, the need
to specify the environment parameters of the system manually, and, second, the
possibility to easily maintain different variants of the software. The first property
is a natural result of the above discussion: it is nearly impossible to determine all
the environment parameters automatically on an HPC system. It turns out, though,
that the number of parameters that have to be specified is small, compared to some
workstation software packages. The user has to specify the names of the compilers,
the optimization flags that should be used, and the locations of some libraries. The
biggest chunk are the compiler-related settings. To facilitate this task, the settings
are grouped into a Python map data structure, and a function that defines the settings
exists for each architecture. An example for such a function is shown in Listing 3.1.
Functions defining specific settings for some architecture can, of course, make use
of functions defining more general settings. Listing 3.2 shows the function setting
the parameters for a GNU Linux system running on an Intel Core 2 processor and us-
ing version 4.2 of the GNU C++ compiler. The function gnu_linux_core2_gcc4_1
uses the general settings for GNU Linux defined in gnu_linux and specifies only the
settings specific to Core 2 and GCC 4.2.

The need to build different variants is also common for HPC software. For ex-
ample, a program may support both shared- and distributed-memory parallelism.
When the program is deployed on a system that requires only distributed-memory
parallelism, the shared-memory support of the program may deteriorate the per-
formance, even if it is not used. In this case, it is beneficial to completely disable
the shared-memory support already at compile time. SCons makes building differ-

62

www.manaraa.com

3.2. SOFTWARE ENGINEERING

Listing 3.1: General settings for GNU Linux systems.

def gnu_linux (env):
env[’CC’] = ’gcc’
env[’CXX’] = ’g++’
env[’FORTRAN’] = ’gfortran’
env[’LD’] = ’g++’
env[’MPICC’] = ’mpicc’
env[’MPICXX’] = ’mpic++’
env[’MPIFORTRAN’] = ’mpif77’
env[’MPILD’] = ’mpic++’
env[’CFLAGS_ARCH’] = ’’
env[’CXXFLAGS_ARCH’] = ’’
env[’FORTRANFLAGS_ARCH’] = ’’
env[’LINKFLAGS_ARCH’] = ’’
env[’CFLAGS_TUNE’] = ’-O2’
env[’CXXFLAGS_TUNE’] = ’-O2’
env[’FORTRANFLAGS_TUNE’] = ’-O2’
env[’LINKFLAGS_TUNE’] = ’-O2’
env[’CFLAGS_DEBUG’] = ’-O0 -ggdb’
env[’CXXFLAGS_DEBUG’] = ’-O0 -ggdb’
env[’FORTRANFLAGS_DEBUG’] = ’-O0 -ggdb’
env[’LINKFLAGS_DEBUG’] = ’-O0 -ggdb’
env[’FORTRAN_NAME’] = ’lcname ## _’

Listing 3.2: Specific settings for Intel Core 2 and GCC 4.2.

def gnu_linux_core2_gcc4_2 (env):
gnu_linux(env)
env[’CFLAGS_ARCH’] = ’-march=nocona’
env[’CXXFLAGS_ARCH’] = ’-march=nocona’
env[’FORTRANFLAGS_ARCH’] = ’-march=nocona’
env[’LINKFLAGS_ARCH’] = ’-march=nocona’
env[’CFLAGS_TUNE’] = ’-mtune=generic -O2’
env[’CXXFLAGS_TUNE’] = ’-mtune=generic -O2’
env[’FORTRANFLAGS_TUNE’] = ’-mtune=generic -O2’
env[’LINKFLAGS_TUNE’] = ’-mtune=generic -O2’

63

www.manaraa.com

CHAPTER 3. TOWARDS PETAFLOP PERFORMANCE

Listing 3.3: SCons code (simplified) for building different variants of HHG.

for target in COMMAND_LINE_TARGETS:
if target == ’ser’:

build_root = build_prefix + ’-ser’
ugli_root = env[’UGLI_SER’]
env_clone = env.Clone()

elif target == ’par’:
build_root = build_prefix + ’-par’
ugli_root = env[’UGLI_PAR’]
env_clone = env.Clone()
env_clone[’CC’] = env[’MPICC’]
env_clone[’CXX’] = env[’MPICXX’]
env_clone[’FORTRAN’] = env[’MPIFORTRAN’]
env_clone[’LD’] = env[’MPILD’]
env_clone.Append (CPPDEFINES = [’DM_PARALLEL’])

Export(’env_clone’)
SConscript (’SConscriptLib’, variant_dir=build_root+’/lib’,

duplicate=0)

ent variants easy. An existing configuration environment, like the one set up in List-
ings 3.1 and 3.2, can be cloned for each variant and then be supplemented with the
variant-specific configuration. Listing 3.3 shows how a serial and an MPI-parallel
variant of HHG are set up. It would even be straightforward to refine variants into
sub-variants. For example, if shared-memory parallelism was added to HHG, the
environment for the parallel variant could simply be cloned again, into sub-variants
for shared-memory, distributed-memory, and mixed parallelism.

Summarizing the advantages of the HHG build system, two points are worth be-
ing highlighted. Most notable in every-day use are the reduced times for rolling out
the software on high performance computers, caused by a reduced number of files
that have to be written to the parallel file system. The second point, improved trans-
parency, is especially important for users who do not want to dig into the internals
of the build system. All build settings are defined explicitly in a few well-readable
files.

3.3 Performance analysis

In a cooperation with the Future Technology Group at Lawrence Berkeley National
Laboratory6, HHG’s performance on different computer architectures was analyzed
in detail. Completing this analysis required a survey of available performance anal-
ysis tools, with the goal to identify the ones that are suited for the specific needs
of analyzing HHG’s performance. The findings are presented in the first part of this
section.

As part of the project, also HHG’s own performance measurement framework

6http://ftg.lbl.gov

64

http://ftg.lbl.gov

www.manaraa.com

3.3. PERFORMANCE ANALYSIS

was extended, and a toolkit for evaluating the performance measurements was cre-
ated. The tools were successfully used in finding a performance bottleneck on one
of the architectures, which was caused by a problem in the computer’s operating
system configuration. HHG’s performance measurement framework and the per-
formance evaluation toolkit are presented in the second part of this section.

3.3.1 State of the art

Three tools were assessed regarding their usability with HHG: IPM, Vampir, and
TAU. The tools have to fulfill three main requirements in order to be useful for our
purposes. The first, and most important one, is the portability to many platforms.
In particular, SGI Altix 4700, Cray XT4, and IBM BlueGene/P had to be supported
for this project, as these platforms were mainly used for evaluating HHG. Second,
since multigrid algorithms have a recursive structure (completing a V-cycle on a fine
mesh requires recursively completing a V-cycle on a coarser mesh), the performance
analysis tools have to resolve and display recursive function calls in some way. The
last requirement arises from HHG’s software structure. Some functions consist of
several parts that have to be timed individually. Timing of each of the parts must
be triggerable separately. The effort for refactoring the complete software structure
just for timing purposes would have been disproportionally high, let alone refactor-
ing would affect the performance. Therefore, the performance analysis tools have to
support timing of sub-function blocks.

The gathering of performance data can be divided into two main strategies: pro-
filing and tracing. A profile sums up the values of recurring performance events, but
does not store information about when the events occurred or how they were or-
dered in time. For example, if a program repeatedly calls two functions, a time profile
of the program can tell how much time was spent in each function in total, but not
how much time was spent in every single function call. A trace, in contrast, records
the values of individual performance events, and stores their absolute position in
time or their relative order of occurrence.

While a profile can also be created from a trace in a post-processing step by sum-
ming up the values of individual performance events, pure profilers are still neces-
sary. A trace generates much more data than a profile—data that has to be stored in
intermediate buffers in memory. These buffers can not be very large, in order not to
hinder the execution of the program, and their contents have to be written to disk
whenever they are full. These disk accesses occur at unforeseeable times and have
a significant impact on the measured performance. Pure profile data volumes are
usually so small that they do not have to be flushed to disk before the end of the pro-
gram run. The following paragraphs will focus on three performance analysis tools
and highlight their advantages and restrictions regarding our requirements.

Integrated Performance Monitoring (IPM)

The Integrated Performance Monitoring (IPM) tool is portable to all of the archi-
tectures mentioned above[42]. It creates profiles in the HTML format that can be
viewed with an internet browser. The performance data is presented in a variety of
summary charts. The focus of IPM is on profiling. The so-called “snapshot tracing”
feature collects tracing data during user-specified time intervals, until a buffer of
predefined size is filled. While IPM does not offer a natural way of dealing with recur-
sive function calls, it allows for defining regions using the MPI_Pcontrol directive.

65

www.manaraa.com

CHAPTER 3. TOWARDS PETAFLOP PERFORMANCE

A string passed to this directive is interpreted as the region name, and the profiling
output generated by IPM can be filtered by the region name. The region names can
be set dynamically at program run time. This allows for the definition of recursive
regions by including the recursion depth into the name (e. g., the level, for a multi-
grid algorithm). The MPI_Pcontrol statements can be placed at arbitrary locations
in the code, enabling the performance measurement in sub-function regions. Thus,
IPM fulfills all the requirements on a profiler that we stated initially. Its profiling fea-
tures have proven highly useful in the performance analysis of HHG, but the tool
lacks sufficient tracing support.

Vampir

Vampir7 is a partly commercial tool. It is split into a freely available trace genera-
tor (called “vampirtrace”) and a commercially distributed trace visualization GUI
(called “vampir”). Like TAU, Vampir records traces and it generates and visualizes
profiling information using these traces. At the time the performance analysis project
was carried out, Vampir had been ported to SGI Altix 4700 and Cray XT4, but not to
IBM BlueGene/P. Recursive function calls were partly supported by the GUI. When
viewing the trace of a selected process, the time is assigned to the x axis of the
two-dimensional display, and the recursion depth is assigned to the y axis. Filtering
traces or profiles for a certain recursion depth is not supported, though. If this func-
tionality is required (as in the case of HHG), manual instrumentation becomes nec-
essary again. The vampirtrace API supports functions similar to IPM’s MPI_Pcon-
trol, which was explained above. Using this API also allows for manually defining
sub-function regions, which was the third of our requirements. The mature and ver-
satile vampir GUI proved very helpful in supporting our performance analysis work,
but due to the lack of BlueGene/P support it was not used as our main analysis tool.

Tuning and Analysis Utilities (TAU)

Tuning and Analysis Utilities (TAU)[33] is, like IPM, portable to the required archi-
tectures. TAU creates traces during program run time. It can generate profiles from
the traces in a post-processing step, if desired. The graphical user interface (GUI) of-
fers functions for visualizing both traces and profiles. TAU can also store the recorded
data in formats readable by other tools, e. g., Vampir.

Due to complications during the roll-out of the tool on some of the computers
that could not be resolved within the available time frame, we could unfortunately
not use TAU for our performance measurements. The tool has strongly evolved,
since, and the support for new computer architectures and systems is continuously
being extended. In any assessment of performance analysis tools today, TAU has to
be considered.

3.3.2 HHG’s performance analysis toolkit

For basic profiling purposes, IPM was suited well and fulfilled our requirements. For
tracing purposes, none of the considered tools fully satisfied our needs. Therefore,
a toolkit that fulfills all the requirements was developed in order to support the per-
formance study presented in Section 3.4. Its design concepts shall be outlined in the
following.

7http://www.vampir.eu/

66

http://www.vampir.eu/

www.manaraa.com

3.3. PERFORMANCE ANALYSIS

The toolkit consists of two components,

• a framework for recording timings and other parameters during program exe-
cution, and

• a set of tools for generating timing and profiling graphs from the recorded
data.

Both components fulfill two important requirements. First, they allow for the in-
strumentation of sub-function blocks. Second, they are aware of recursivity, i. e., the
recording and evaluation of measurements can distinguish between different levels
of the same function (or sub-function block).

In comparison to other toolkits, HHG’s toolkit also has some limitations. As the
following paragraphs will explain, the code instrumentation is not done automati-
cally, but the measurement points have to be inserted manually by the programmer.
If used heavily, he measurement directives can also clobber the code to some extent,
making it less readable. Besides that, a pure profiling mode is currently not available.

Measuring time and other parameters

Timing data is recorded using the available logging functionality. This component
was already used previously for writing data into log files. The component also pro-
vides a feature to avoid measurement aberrations caused by flushing log data to disk:
a memory buffer of configurable size can be reserved for the log data, and the flush-
ing of the buffer can be triggered manually at points where it does not harm the
measurements, e. g., between V-cycles.

The timing instructions have to be inserted into the code by the programmer.
They are configurable with a name and a parameter that indicates the current recur-
sion level. Each unique combination of these parameters defines a monitor. During
program execution, the times measured for each monitor are written into the log file
in a concise plain-text format.

The times are measured using the gettimeofday function, which is defined in
the POSIX standard and, therefore, available on all systems. It returns the current
system time with a theoretical accuracy of 10−6 s. Preliminary measurements on
HLRB II showed that, taking the overhead of function calls into account, the resolu-
tion of this method is approximately 10−4 s in reality. It is straightforward to extend
the timing framework to measure other parameters, besides the time. Currently,
recording of CPU counters retrieved through the Performance Application Program-
ming Interface (PAPI, [46]) is supported.

The detailed instrumentation of HHG results in quite a large number of timing
directives. In order to keep the log file sizes moderate, the timing of individual com-
ponents can be enabled via the SCons configuration. This has the additional benefit
that unused timing directives do not add any overhead to the program’s execution
times. Comparing measurements with and without timing enabled proved that the
timing framework, if configured reasonably, does not significantly alter the execu-
tion times.

Evaluating measurements

For the evaluation of the recorded measurements, three command-line tools are
available.

67

www.manaraa.com

CHAPTER 3. TOWARDS PETAFLOP PERFORMANCE

Listing 3.4: Sample output (shortened) of the profile tool for a HHG run perform-
ing four V-cycles on 4096 processes. 57 monitors were enabled.

4096 processes, 57 timers
0: vcycle l7 presmooth
1: vcycle l7 prolongate
2: vcycle l7 residual
...
56: vcycle l4 residual

0: vcycle l7 presmooth
0 1.15306e-01 1.10866e-01 1.16576e-01 1.18248e-01
1 1.16738e-01 1.12770e-01 1.16662e-01 1.15959e-01
...
4095 1.21739e-01 1.23102e-01 1.18604e-01 1.16803e-01
4096 1.07166e-01 1.06388e-01 1.05857e-01 1.06970e-01 # avg
4097 9.21860e-02 9.20310e-02 9.08080e-02 9.16770e-02 # min
4098 1.48383e-01 1.40133e-01 1.45079e-01 2.21535e-01 # max
4099 4.38954e+02 4.35764e+02 4.33590e+02 4.38149e+02 # sum

The profile tool reads the log file of an HHG run and collects all the monitors
that occur in the file. For each monitor, it creates a summary of the values reported
by each process. For each monitor, the summary contains

• all values (from all processes, from all iterations) reported for the monitor,

• for each iteration, the maximum, the average, and the sum over all processes.

Note that not all items of the profile make sense for all kinds of measurements. The
sum, for example, is not a useful item for timing data; however, HHG also has a mon-
itor that counts the number of unknowns in each process’s part of the mesh, and for
this monitor the sum is the total number of unknowns in the simulation. An example
of the output of profile is shown in Listing 3.4.

The output of profile can be used by the scalingplot tool to create scaling
plots with Gnuplot. An output file generated by profile contains data for a single
HHG run on a specific number of processes. scalingplot requires an additional
file that lists the profile output files for different numbers of processes. With this
input data, scalingplot can generate a graph like in Fig. 3.1. The plot shows the
scaling of two monitors from 4 to 4096 processes. The lines follow the average time
over all processes during one V-cycle; error bars indicate the minimum and maxi-
mum values measured.

The third tool, histplot, is useful when measurements of different processes
shall be compared. In tightly coupled algorithms, like the V-cycle, it is critical for the
performance that all processes take about the same time for the same step. If only
one process takes longer, all others have to wait before starting with the next step.
This means, one outlier will slow down the whole program. Exactly this problem oc-
curred when testing HHG on a Cray XT4 computer (the same system as HECToR,
but with a slightly different configuration). Due to a misconfiguration of the sys-
tem library that is responsible for managing RAM pages, the residual calculation on

68

www.manaraa.com

3.4. PERFORMANCE OF HHG ON DIFFERENT ARCHITECTURES

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

4 16 64 256 1024 4096

T
im

e

Number of processes

vcycle l8 presmooth (avg/min/max)
vcycle l8 residual (avg/min/max)

Figure 3.1: Sample output of the scalingplot tool.

a few processes was 25 % slower than average. This caused the measured perfor-
mance to be significantly lower than expected. A plot created by the histplot tool
immediately unveiled this artifact. An excerpt of the plot is shown in Fig. 3.2. The
x-axis has been trimmed for demonstration purposes; the complete plot includes
the measurements for all processes. The stepped line shows the time of the “vcycle
l8 residual” monitor measured on each process. In addition, horizontal lines show
the average, minimum, and maximum over all processes. The graph shows at first
glance that there is a problem with outliers. Zooming into the plot allowed for pre-
cisely identifying the process IDs of the outliers.

3.4 Performance of HHG on different architectures

A project funded by the Distributed European Infrastructure for Supercomputing Ap-
plications (DEISA) gave us the chance to test HHG on three of Europe’s leading su-
percomputers [29]. This section contrasts the characteristics of the evaluated com-
puter architectures, describes the measurement setup that was used in the study,
and compares the performance and scalability of HHG on the three computers.

3.4.1 Architectures

In order to see the influence of hardware parameters on HHG’s performance, mea-
surements were carried out on three computers with quite different architectures.
The SGI Altix system HLRB II at the Leibniz Supercomputing Centre in Munich pro-
vided the largest amount of memory, both per core and in total. The Cray XT4 system
HECToR at the Edinburgh Parallel Computing Centre had the most powerful pro-
cessors. The IBM BlueGene/P system JUGENE at the Jülich Supercomputing Centre
provided the largest number of cores. The following paragraphs describe the other
two computers in detail. Table Table 3.1 summarizes their key facts.

69

www.manaraa.com

CHAPTER 3. TOWARDS PETAFLOP PERFORMANCE

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

150 200 250 300

T
im

e

Process ID

1024 procs: avg = 3.08887e-01
min = 2.95524e-01
max = 3.84617e-01

vcycle l8 residual

Figure 3.2: Sample output (x-axis trimmed) of the histplot tool.

Table 3.1: Key facts of the evaluated computers, given for the installation phases
evaluated in this thesis: phase 2 (from 04/2007) of HLRB II, phase 1 (until 06/2010)
of HECToR, and phase 1 (until 03/2009) of JUGENE. The data is taken, if not stated
otherwise, from the references cited in the text.

Property HLRB II HECToR JUGENE

Model SGI Altix Cray XT4 IBM BlueGene/P
Type of CPU Intel Itanium 2 AMD Opteron IBM PowerPC 450
Clock frequency 1.6 GHz 2.8 GHz 850 MHz
of cores per proc. 2 2 1
of cores in system 9 728 11 328 65 536
Theor. perf. per core 6.4 GFlop/s 5.2 GFlop/s 3.4 GFlop/s
Theor. perf. of system 62 TFlop/s 59 TFlop/s 222 TFlop/s
Linpack perf.8 56 TFlop/s 54 TFlop/s 180 TFlop/s
Memory per core 4 GB 6 GB 2 GB
Memory per SMP node 8 or 16 GB 6 GB 2 GB
Memory of system 39 TB 33.2 TB 32 TB
Network type(s) fat tree, 3D torus 3D torus,

2D mesh tree
Point-to-point bandw. 6.4 GB/s 2.2 GB/s 5.1 GB/s
Bisection bandw. <1.9 TB/s9 ≥4.1 TB/s data missing

70

www.manaraa.com

3.4. PERFORMANCE OF HHG ON DIFFERENT ARCHITECTURES

HLRB II

The installation of HLRB II was completed in two phases. Phase 1, described in detail
in [4], had a total of 4096 CPUs and 17.2 TB of main memory (RAM). The computer
was comprised of 16 shared-memory partitions, each holding 256 node blades. Each
blade hosted a 1.6 GHz single-core Intel Itanium 2 CPU with a theoretical peak per-
formance of 6.4 GFlop/s, as well as 4 GB of RAM.

In 2007, HLRB II reached its final assembly stage with installation phase 2 [5].
The measurements presented in this thesis were performed on this installation. The
single-core CPUs were replaced by dual-core Intel Itanium 2 CPUs. The clock fre-
quency did not change, so every core of the new processors still had a theoretical
peak performance of 6.4 GFlop/s. A subset of the blades was equipped with two
CPUs (i. e., four cores). A total of 9728 cores were available on HLRB II in phase 2. The
high density blades, hosting two CPUs each, were upgraded to 16 GB RAM, the high
bandwidth blades with one CPU each were equipped with 8 GB. Thus, each core still
had access to 4 GB of local memory, and the total amount of RAM in phase 2 was
39 TB. In terms of available memory per core, HLRB II was hardly matched by any
other computer of comparable size. Also in the total amount of memory, both instal-
lation phases of HLRB II were outstanding at the respective times of commissioning.
Even computers ranked higher in the TOP500 lists of November 2006 and June 2007
due to higher Linpack performance numbers did not beat HLRB II in memory size.

Besides the amount of memory per core, also the amount of memory accessi-
ble in a single shared-memory address space was exceptionally high. HLRB II was
equipped with a NUMALink 4 network. Within a partition, the routers provided a
fat-tree topology. The inter-partition network had a mesh topology. The network
synchronized all the memory within a partition in a cache-coherent, non-uniform
memory access (ccNUMA) style, allowing applications to use up to 2 TB of RAM in a
purely shared-memory parallel programming style, i. e., without having to resort to
MPI parallelization.

HECToR

HECToR was installed in three phases. Each of the installations used AMD Opteron
processors, but the number of cores per processor increased from 2 over 12 to 16.
The measurements presented in this thesis were performed on the first installation,
“Phase 1” [32]. Its compute power came from AMD Opteron dual core processors
that were clocked at 2.8 GHz and had a theoretical peak performance of 5.2 GFlop/s
per core. The installation was organized into 60 cabinets, which held 1416 compute
blades with 4 processors, each. Thus, the total number of cores amounted to 11328,
which lead to a theoretical peak performance of 59 TFlop/s for the entire system.

Each processor controlled its own memory chip, which means that sharing mem-
ory between processors on the same blade—as on HLRB II—was not possible. Each
processor had 6 GB of memory, which sums up to 33.2 TB for the whole system.

The processors each had their own network router, which connected them to a
3D-torus network. The system’s point-to-point bandwidth was 2.17 GB/s, its bisec-
tion bandwidth was 4.1 TB/s.

8According to http://www.top500.org/system/174855 (HLRB II), http://www.top500.org/
system/175159 (HECToR), and http://www.top500.org/system/176501 (JUGENE).

9Hager et. al. report a bisection bandwidth of 0.8 GB/s per direction, per socket [26].

71

http://www.top500.org/system/174855
http://www.top500.org/system/175159
http://www.top500.org/system/175159
http://www.top500.org/system/176501

www.manaraa.com

CHAPTER 3. TOWARDS PETAFLOP PERFORMANCE

JUGENE

JUGENE’s lifetime split into two phases. The system commenced operation with 16
racks; for the second phase it was upgraded to 72 racks. The measurements pre-
sented in this thesis were performed on the initial installation [28]. The system em-
ployed single core IBM PowerPC 450 processors clocked at 850 MHz, which had a
theoretical peak performance of 13.9 GFlop/s each. The resulting number of 16384
processors (respectively: cores) in total helped the system to a theoretical peak per-
formance of 223 TFlop/s.

Each compute node was equipped with 2 GB of memory, thus, the amount of
memory available to the complete system was 32 TB.

A specialty of JUGENE was that it had two networks. A 3D-torus network pro-
vided a high bandwidth of 5.1 GB/s for point-to-point communication. A second
network connected the cores in a tree structure, which allowed to execute computa-
tions involving collective communication (e. g., vector norms) with very low latency.

3.4.2 Measurement setup for scaling tests

The details of the finite element simulation used for the scaling experiments were
chosen to represent a compromise between a realistic setup resulting from a real-
world problem and, the other extreme, a setup tailored to get maximum perfor-
mance out of HHG. A simulation designed for the highest possible performance,
in terms of the number of unknowns solved for per time interval, is characterized by
a low communication-to-computation ratio and by a mesh layout that subserves an
efficient execution of the necessary communication and computation. The desired
compromise is achieved by appropriately choosing the PDE to be solved, as well as
the finite element mesh on which the PDE is solved.

Model problem (2.1) is a good choice for the PDE. On the one hand, as a linear,
scalar, elliptic PDE with Dirichlet boundary conditions it can be solved efficiently
with multigrid methods. On the other hand it appears as a building block in numer-
ous more advanced equations, e. g., in acoustics simulations.

The choice of the finite element mesh influences all the important simulation
characteristics listed above. The first important decision is to perform a weak-scaling
experiment, in which the problem size is proportional to the number of processes in
every run of the scaling series. A strong-scaling experiment, in contrast, would use
the same problem size for varying number of processes. The results of weak- and
strong-scaling experiments usually differ significantly, but also the intentions are
different. The strong-scaling experiment answers the question, “by how much can I
speed up the solution of a particular problem by running it on a parallel computer?”
The speed-up will be good at a moderate degree of parallelism, but for larger num-
bers of processes the communication overhead will become dominant, and adding
more processes will not reduce the execution times any further. The weak-scaling
experiment answers the question, “how large a problem of the same type can I solve
by using a computer with more CPUs?” The problem size is given by the number of
unknowns, respectively mesh points. In a strong-scaling experiment, in contrast, the
same mesh would be used for all runs. Both types of scaling experiments are valu-
able, and it depends on the application which of them to choose. In the context of
HHG, the weak-scaling experiment is of more interest, because HHG’s intention is
to push the precision of physical simulations to new limits, and not to speed up the
simulation of a particular problem with a given precision.

72

www.manaraa.com

3.4. PERFORMANCE OF HHG ON DIFFERENT ARCHITECTURES

Figure 3.3: Finite element meshes for weak-scaling experiments. The left image
shows a cubic domain that is split into eight sub-cubes. The right image illustrates
how a sub-cube is split into six tetrahedra.

Conducting a weak-scaling experiment requires a series of meshes with increas-
ing size. Our approach to construct such a series of meshes is simple, but neverthe-
less yields meshes that could as well come from a real-world simulation. It is illus-
trated in Fig. 3.3. A mesh for a run with p processes consists of p cubic sub-domains.
Since HHG can currently only deal with tetrahedral meshes, each of the cubes is split
into tetrahedra. The sub-domains are arranged to form a hexahedron that is shaped
as close to cubic as possible by setting the number of sub-domains in each space
direction to be close to 3

p
p.

The described mesh creation technique leads to meshes with a low communi-
cation-to-computation ratio and, therefore, fulfills the requirements stated initially.
The communication-to-computation ratio is defined by the amount of inter-process
communication necessary for solving a given PDE on a given mesh, divided by the
amount of computation. While the amount of computation is, in our case, accu-
rately represented by the number of arithmetic operations executed, the cost of
communication is determined not only by the transferred data volume, but also by
the number of messages sent between the processes. At this point, we focus purely
on the data volume. Multigrid can solve (2.1) with a number of arithmetic opera-
tions proportional to the number of unknowns, if the finite element mesh looks as
described above [48, Chapter 3.2.2]. Therefore, the amount of computation can be
assumed as proportional to the number of processes. The amount of communica-
tion is determined by the number of mesh points on the internal boundaries be-
tween the sub-domains. These points hold data that is needed by several processes
adjoining the boundaries and, therefore, has to be communicated. Clearly, the ar-
rangement of the sub-domains determines the area of the internal boundary faces.
So, why not put them all in a row, so each cube has at most two neighbors, or even
disconnect them entirely, eliminating all need of communication? This would, of
course, contradict the goal of having a physically realistic simulation. We have to
pick some reasonable shape, and we choose to cast the sub-domains into a shape as
close to cubic as possible.

The cubic sub-domains are split into six tetrahedra each, because this is the

73

www.manaraa.com

CHAPTER 3. TOWARDS PETAFLOP PERFORMANCE

Table 3.2: Measurement setup for each computer.

Property HLRB II HECToR JUGENE

Levels of refinement 8 8 7
Cubes per process 2 1 1
Unknowns per process 33.16×106 16.58×106 2.05×106

smallest possible number. It is beneficial for the computational efficiency of HHG
to have an input mesh with a small number of elements per process. If there are few
elements in the input mesh, they can be refined many times until the computer’s
memory is filled. Then, the structured regions on the finest levels are large, and the
data (unknowns, right hand side, etc.) can be stored in long, contiguous arrays in
memory. The loops of the computational kernels (smoothing, interpolation, etc.),
which traverse these arrays, have many iterations, and optimization techniques like
loop unrolling, pipelining, and SIMD vectorization are very effective. This leads to
a Flop/s rate close to the processor’s peak performance, and the arithmetic opera-
tions, called “amount of computation” above, can be worked off quickly.

Table 3.2 summarizes the measurement setup key facts for all computers. On
each computer the configuration was chosen such that the simulation fills as much
as possible of the computer’s RAM. The variables (unknowns, right-hand side, resid-
ual, and, optionally, error) contribute most to the simulation’s memory consump-
tion; the memory needed for the operator stencils is negligible. The main control to
influence the memory consumption is the number of refinement levels. With each
level, the memory demand increases by a factor of eight, because the number of
mesh points doubles in each spatial dimension. Another tuning parameter is the
number of cubes per process. It allows for more a precise adjustment of the memory
demand. However, it also changes the geometries of the process sub-domains and
the number of inter-process boundary primitives, and, thus, the communication-
to-computation ratio.

On JUGENE seven levels of refinement were possible, resulting in 2.05×106 un-
knowns per process. On HECToR, due to the larger memory per process, the mesh
could be refined one level further, resulting in 16.58×106 unknowns per process.
HLRB II has even more memory per process than HECToR, but not enough to go to
nine levels of refinement. It is possible to increase the number of cubes per process
to two, though, so the number of unknowns per process increases to 33.16×106.

On JUGENE and HECToR a higher number of unknowns per process could prob-
ably have been achieved by experimenting further, trying other combinations of
number of levels and number cubes per process. Experiments are inevitable, here,
because the real memory demand of the actual application running on the com-
puter cannot be predicted precisely. Even though the memory required for storing
the variables and operators can be calculated, the actual memory demand of the
complete application will be higher due to, for example, overheads of the commu-
nication library. Besides that, the memory occupied by the operating system is not
known exactly. The experiments necessary to determine the optimal combination
of parameters are rather time-consuming. For the measurements on HLRB II that
effort was spent, because the main goal was to set a new record in number of un-
knowns solved with the finite element method [24]. That was not the focus of the
tests on HECToR and JUGENE, however. On these computers the goal was to show

74

www.manaraa.com

3.4. PERFORMANCE OF HHG ON DIFFERENT ARCHITECTURES

that HHG can easily be deployed onto a variety of systems, and that it achieves
good scalability out of the box, i. e., without modifications of the implementation.
For showing that, it was not necessary to drive the simulation’s size to the absolute
maximum.

On HLRB II, the scaling runs were performed up to the complete system size. On
HECToR, the CPU core count was increased in powers of two between scaling runs,
because this simplifies the creation of the corresponding finite element meshes.
Therefore, the largest run was done with 8192 cores. On JUGENE, measurements
for up to 16384 cores are reported. At the time of the study, a part of HHG’s initial-
ization phase—the distribution of elements to processes and the identification of
inter-process boundaries—was not parallelized well. Every process had to work on
the complete input mesh, and the algorithm’s complexity was quadratic in the num-
ber of elements in the input mesh. On HLRB II and HECToR that was not a problem.
On JUGENE, however, with eight times the number of cores, and a comparably low
performance of the individual cores, the duration of the initialization became in-
feasibly long—by magnitudes longer than the solution phase. In the meantime, this
weakness has been eliminated, and HHG has been run at much larger scales [20].

3.4.3 Results

Table 3.3 shows the results of the weak scaling experiments on HLRB II, HECToR,
and JUGENE. In case of perfect scalability the times per V-cycle stay constant for
each computer, because the amount of computation per process stays constant. Per-
fect scalability is, of course, not achievable for an algorithm that involves communi-
cation—especially, collective communication (for computing the residual norms).
So, let us have a look how close to perfect scaling HHG is on each computer. For
practical purposes, good scalability is nice, but what really counts at the end of the
day is whether the simulation has finished or not. Therefore we also analyze how
many unknowns HHG can solve for per second on each computer.

Parallel scalability

Fig. 3.4 depicts HHG’s parallel scalability S(p) vs. the number of processes p. The
parallel scalability is defined as the time per V-cycle on p processes divided by the
time per V-cycle on p0 processes,

S(p) = t (p)

t (p0)
. (3.1)

The reference point p0 can be chosen arbitrarily. We set p0 to 4, the smallest number
of processes for which timings were taken on all computers. The scaling diagram
reveals significant differences between the computers.

The simulation on JUGENE, on first glance, seems to have a severe scalability
problem. It is not as bad as it looks, though. First of all, on the maximum number
of processes the V-cycle takes only 56 % longer than on four processes (S(16384) =
1.56), which is quite good, considering the extreme span in the number of processes.
Second, the scaling is deteriorating quickly only until 128 processes. From there on,
S remains almost constant: S(16384)/S(128) = 1.07. On HECToR and HLRB II the
scalability is even better, and it follows a more linear curve. At 8152, respectively
8192, processes, the scaling is approximately 1.16 for both computers. When we
used the full HLRB II system (9170 processes), the scaling jumped to 1.21. HHG’s

75

www.manaraa.com

CHAPTER 3. TOWARDS PETAFLOP PERFORMANCE

Table 3.3: Results from performance measurements on three computers. For each
run, the table shows the number of unknowns and the run-time of one V-cycle in
seconds.

Cores HLRB II HECToR JUGENE

Unk. ×106 Time Unk. ×106 Time Unk. ×106 Time

4 134.2 6.38 66.6 2.72 8.3 3.05
8 268.4 6.67 16.6 3.33

16 536.9 6.75 33.2 3.48
32 1 073.7 6.80 66.6 3.67
64 1 070.6 3.00 133.4 4.04

128 4 295.0 7.06 267.1 4.44
252 8 455.7 7.39
256 4 286.6 2.97 534.8 4.46
512 1 070.6 4.60

1024 17 158.9 3.12 2 142.2 4.60
2048 4 286.6 4.56
4096 68 669.2 3.09 8 577.4 4.60
8152 273 535.7 7.43
8192 137 355.0 3.13 17 158.9 4.70
9170 307 694.1 7.75

16384 34 326.2 4.75

1

1.1

1.2

1.3

1.4

1.5

1.6

4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384

Sc
al

in
g

o
ft

im
e

p
er

V
-c

yc
le

(S
(p

))

Number of processes (p)

HLRB2
HECToR
JUGENE

Figure 3.4: Scaling of V-cycle run-times.

76

www.manaraa.com

3.4. PERFORMANCE OF HHG ON DIFFERENT ARCHITECTURES

1

10

100

1000

10000

100000

4 8 16 32 64 128 256 512 1k 2k 4k 8k 16k 32k 64k

U
n

kn
ow

n
s

p
er

se
co

n
d

(U
(p

))

Number of processes (p)

HLRB2
HECToR
HECToR (extrapol.)
JUGENE
JUGENE (extrapol.)

Figure 3.5: Unknowns processed by the V-cycle per second vs. number of processes.
The unit k in the x-axis labels stands for a factor of 1024. Extrapolations for HECToR
and JUGENE show theoretical values for the complete systems.

timing methods were not detailed enough at the time of the experiment to find out
the root cause of the jump. It is likely, though, that the operating system was not
configured optimally, because HLRB II needed to be re-configured especially for this
measurement; in normal operation, only 8152 cores were available.

Unknowns per second

Fig. 3.5 puts the run-times t (p) of the V-cycles into relation with the numbers of
unknowns N (p) in the linear system by plotting the ratio

U (p) = N (p)

t (p)
(3.2)

vs. the number of processes p.
In the comparison of the three computers, HECToR comes out first, with a small

margin of 11 % in front of HLRB II, when comparing U (p) for same numbers of p.
We should not forget, though, that HECToR was larger than HLRB II. Since a run on
the complete HECToR system was not performed, the theoretical performance on
11328 processes is shown by extrapolating the scaling from 4096 to 8192 processes.
Wit that value (U (11328) = 6×1011) the computer is clearly ahead of the others.

For equal numbers of p, JUGENE is clearly behind the other computers. That is
not surprising, though, because the PowerPC processor has a much smaller Flop/s
rate than the Itanium or Opteron processor. However, JUGENE has a much larger
total number of cores. Extrapolating the performance measured on 8192 and 16384
cores shows that the full JUGENE system would be on a similar performance level as
one the other two systems. Measurements of HHG on up to 294912 cores of JUGENE
have been reported in [20].

77

www.manaraa.com

CHAPTER 3. TOWARDS PETAFLOP PERFORMANCE

78

www.manaraa.com

Chapter 4

Adaptive mesh refinement

Contents
4.1 Introduction . 79

4.2 Refinement techniques . 80

4.3 Full multigrid on meshes with hanging nodes 82

4.3.1 The basic algorithm . 85

4.3.2 The improved algorithm . 93

4.3.3 The final algorithm . 96

4.4 An efficient adaptive refinement algorithm 102

4.4.1 Error estimation . 102

4.4.2 Mesh refinement . 102

4.5 Implementation in HHG . 116

4.5.1 The adaptive refinement algorithm 116

4.5.2 Data structures for the refinement boundary 119

4.5.3 The adaptive full multigrid algorithm 122

4.6 Numerical results . 126

4.6.1 Model problems and geometries 126

4.6.2 Expected results . 128

4.6.3 Observed results . 129

4.1 Introduction

Just as important as solving for many unknowns in short time is reducing the num-
ber of unknowns. Adaptive mesh refinement (AMR) can significantly reduce the prob-
lem size in many cases. The technique is known to impede the use of regular data
structures, though, which drastically restricts the possible performance of the solver.
This chapter shows how AMR is implemented in HHG without destroying the regu-
larity of the data structures, thus maintaining its computational efficiency.

The term adaptive mesh refinement refers to techniques for adjusting the mesh
resolution to the properties of the problem that has to be solved. A physics sim-
ulation may require a higher mesh resolution in places where the solution is not
as smooth as in other areas. Typical examples are fluid simulations, which need

79

www.manaraa.com

CHAPTER 4. ADAPTIVE MESH REFINEMENT

high mesh resolutions where vortices or shocks are formed. The solver has to pro-
vide spatial adaptivity for dealing with these problems. If the required adaptivity is
known a priori to the computation, pure spacial adaptivity is sufficient. However,
often the areas that require higher mesh resolutions are not known in advance. In
time-dependent simulations these regions may even move over time (moving vor-
tices are an example). In these cases, temporal adaptivity is necessary. Adaptivity in
space and time are orthogonal, as they can be used independently, but they can also
be combined.

Related work

For more details on AMR we refer to an introductory article about multigrid on adap-
tively refined meshes by Bastian and Wieners, which includes references to related
work [8]. A paper by Lang and Wittum describes the building blocks of a parallel
adaptive multigrid solver in detail [31]. An in-depth analysis of the mathematical as-
pects of multilevel methods on adaptively refined meshes is available in a book by
McCormick [35]. For both spatial and temporal adaptivity, error indicators deciding
where and when to refine the mesh are necessary. There is extensive literature on
the topic of error estimation, e. g., by Verfürth [49], Ainsworth and Oden [1].

Outline

This chapter presents the implementation of spatial adaptivity in HHG. First, Sec-
tion 4.2 contrasts two popular refinement techniques, red-green refinement and re-
finement with hanging nodes, the latter of which is used in HHG. In the main part
of the chapter, Sections 4.3 and 4.4, the theoretical foundation for implementing
the full multigrid algorithm with adaptive refinement is constructed. Section 4.5 de-
scribes the HHG data structures that are necessary for realizing an efficient imple-
mentation. An efficient mesh setup algorithm and its implementation are also de-
scribed in this section. Finally, Section 4.6 presents results from a practical example.

4.2 Refinement techniques

We have already met a non-adaptive mesh refinement technique in this thesis: the
HHG mesh hierarchy introduced in Section 2.4 was created by refining an initial set
of coarse finite elements. It was implicitly assumed that all elements are refined to
the same level. If we give up this assumption, we have several possibilities of adap-
tive mesh refinement. Two of them are compared in this section. For simplicity, the
discussion refers to 2D meshes, which is sufficient for showing all the relevant dif-
ferences.

Refinement with hanging nodes

Instead of refining all coarse-grid elements to the same level, each element can be
refined individually. An example is shown in the left part of Fig. 4.1. The mesh on
the coarsest level consists of four triangles and one quadrilateral. All elements are
refined once, except for the lower left triangle, which is refined twice. The effect is
the desired one: the mesh width is adapted locally.

However, there is also an undesired effect: some of the corners of the triangles
on the second refinement level are located on edges of other elements; they are

80

www.manaraa.com

4.2. REFINEMENT TECHNIQUES

Figure 4.1: Refinement with hanging nodes (left) and red-green refinement (right)

marked with circles in the figure. Thus, the mesh has become non-conforming ac-
cording to Definition 1. The problematic points are called hanging nodes. This arti-
fact challenges the previous understanding of the finite element method. Assuming
that the mesh nodes—i. e., the locations where the weights for the basis functions
are defined—are located at the element corners, there are now locations at which a
local basis function is only valid for one of the adjacent elements. How to deal with
this situation will be discussed in Section 4.3.

Red-green refinement

In order to get rid of the hanging nodes, red-green refinement can be applied [7].
The two colors refer to the two steps that are necessary to restore the conformity of
the mesh. The steps and the resulting mesh are illustrated in the right part of Fig. 4.1.
The first (“red”) step is simply the local refinement of individual elements described
above. It is indicated by dotted lines in the figure. The resulting hanging nodes are
taken care of by applying the second (“green”) step, indicated by dashed lines. Each
element that is adjacent to a hanging node is split into two or more elements by con-
necting the hanging node with one or more of the element’s already existing nodes.
After that, the mesh is conforming again. If further refinement is necessary, the red
and green steps can be applied iteratively.

Two—potentially adverse—side-effects of this technique have to be mentioned.
First, the type of the green-refined elements may change. For example, some of the
quadrilaterals in Fig. 4.1 are converted to triangles. Thus, red-green refinement can-
not be used, if meshes with only quadrilateral or hexahedral elements are desired.
Second, if red-refinement were successively applied only to the lower left triangle,
the triangles resulting from the green-refinement would quickly degrade. Some of
their angles would become more and more acute, making the resulting linear sys-
tem harder to solve.

Combining both techniques

While each of the two refinement methods can alone be used to implement adaptive
refinement, combining them results in additional advantages. A solver that is able to
perform red-green refinement as well as structured refinement with varying levels

81

www.manaraa.com

CHAPTER 4. ADAPTIVE MESH REFINEMENT

can trade off the advantages and disadvantages of both methods to obtain an opti-
mal compromise between adaptivity and performance. One of the goals when set-
ting up a simulation for HHG is to have as few coarse grid elements as possible, be-
cause then the structured areas are large and can be treated with high performance.
Refinement with hanging nodes creates less elements on the coarsest level than red-
green refinement and should thus be preferred in the HHG framework. However, not
exploiting red-green refinement can also lead to bad performance. For example, the
domain may have only very few geometric features, so that it can be resolved with
a very coarse initial HHG mesh. Then, if it turned out during the solution process
that the mesh had to be refined only in a small part of an element on the coarsest
level, for instance due to the characteristics of the solution, still the complete ele-
ment would have to be refined regularly, leading to a fine mesh resolution also in
areas where it is not needed. This can be avoided by red-green-refining the initial
coarse mesh.

4.3 Full multigrid on meshes with hanging nodes

Refinement hierarchies

The introduction into adaptive mesh refinement techniques omitted some details
that become relevant when thinking about multigrid methods. First of all, only one
adaptively refined level was considered, up to now. Exploiting the full potential of a
multigrid solver requires a hierarchy of adaptively refined meshes over several levels.
Extending the refinement process to a hierarchy of levels is straightforward, though.
Still, the implications for the hierarchical structure of the meshes are interesting, be-
cause they allow for some simplifications during the construction of the algorithms,
later on. Thus, what is up to now only an idea of an adaptive mesh hierarchy is for-
malized in the following definition.

Definition 2 (Hierarchy of adaptively refined meshes). This definition assumes a hi-
erarchy of regularly refined meshes1, i. e.,

Ωl−1 ⊂Ωl for all l > 0.

Let Cl denote the set of mesh points on which the solution is computed on level l .
It is a subset of all mesh points on level l , excluding the Dirichlet boundary, i. e.,

Cl ⊆Ωl ∪ΓN
l , .

In particular, Cl may be the empty set or the complete setΩl .
For two consecutive meshes, the area in which the solution is computed on the

coarse mesh shall cover at least the area in which the solution is computed on the fine
mesh, i. e.,

Cl ∩
(
Ωl−1 ∪ΓN

l−1

)⊆Cl−1 for all l > 0.

Hierarchical bases

The ideas that have lead to the construction of the multigrid methods for uniformly
refined meshes in Section 2.3 were

1The HHG meshes fulfill this property, see Section 2.4.1.

82

www.manaraa.com

4.3. FULL MULTIGRID ON MESHES WITH HANGING NODES

• fine-grid error smoothing,

• coarse-grid approximation of the fine-grid error, and

• coarse-grid approximation of the fine-grid solution (for FAS).

These concepts, and the multigrid methods built upon them, are also valid for adap-
tively refined meshes with hanging nodes. For an intuitive approach to this mesh
type, an alternative view on adaptively refined meshes is endorsed. Technically, an
adaptively refined mesh with hanging nodes can be interpreted as a uniformly re-
fined mesh, but with limited degrees of freedom for the variables in the “unrefined”
areas.

This dual point of view—well-known to those acquainted with hierarchical bases
[25]—shall not be covered in depth, here, but the basic idea is outlined in Fig. 4.2. In
mesh-based discretization techniques, continuous functions are approximated by
weighted sums of locally defined basis functions. The weights are in the unknowns
vector of the discrete algebraic system of equations, the basis functions influence
the matrix entries and possibly the right-hand side. The basis functions appear very
prominently in the finite element method (see Section 2.2), but also other meth-
ods, like the finite difference method, can be interpreted in that way. Fig. 4.2 com-
pares two types of basis functions. The illustration shows a section of an equidistant
one-dimensional mesh; the mesh boundaries do not have to be considered for a
basic understanding. The top-most picture shows a coarse mesh with three nodes
(labeled 0, 2, and 4). The continuous curve f (x) is approximated by the piecewise
linear curve g0(x), which is constructed by multiplying the depicted basis functions
with appropriate weights (indicated with dashed lines). For approximating f (x) on a
finer mesh (with five mesh points, labeled from 0 to 4), two possibilities are depicted
in the pictures below, both leading to the same approximation g1(x). The easiest way
(shown in the left picture) is to use the same approach as for the coarse mesh and
construct an entirely new set of basis functions adjusted to the new mesh width.
The hierarchical bases approach (shown in the right picture), in contrast, re-uses
the basis functions from the coarse mesh (shown in gray) and introduces new ba-
sis functions only at the new points of the fine mesh. The weights at the new nodes
(indicated with dashed lines again) are now calculated relative to the approximation
on the coarse mesh, g0(x): a weight of zero yields g1(x) = g0(x) at the corresponding
node of the fine mesh.

Because of this property, the concept of hierarchical bases is useful in the initial
formulation of adaptive algorithms. The notion of an adaptively refined mesh with
hanging nodes is not even necessary. The refinement instructions of the error es-
timator can be fulfilled on a standard—uniformly refined—mesh by distinguishing
between two sub-meshes on the fine level:

(1) at those mesh points that do not need to be considered on the fine level, be-
cause the approximation to the solution on the coarse mesh is already good
enough, the weights of the basis functions on the fine mesh are fixed to zero,

(2) all actual computations—i. e., changes to weights of basis functions—on the
fine level are restricted to the remaining mesh points.

When working on the fine mesh, the approximation from the coarse mesh is still
available in sub-mesh (1) and is automatically used by the computations in sub-
mesh (2).

83

www.manaraa.com

CHAPTER 4. ADAPTIVE MESH REFINEMENT

0 2 4

0 1 2 3 4 0 1 2 3 4

Basis functions

f (x)

g0(x)

x

y

g1(x)g1(x)

Figure 4.2: Hierarchical basis functions.

84

www.manaraa.com

4.3. FULL MULTIGRID ON MESHES WITH HANGING NODES

Of course, the plan is not to re-engineer HHG to use hierarchical bases. Rather,
the understanding that a multigrid implementation using hierarchical bases would
remain correct even if the changes to the unknowns vector were restricted to certain
sub-meshes will guide the implementation of adaptivity in HHG. The algorithms
have to be designed such that the computed results coincide with the results the
above scheme would yield.

Outline of this section

The algorithmic steps that have to be performed at the hanging nodes can be de-
duced in a straightforward way from the original algorithms, in principle. To obtain
algorithms that can be implemented efficiently, several more—and mathematically
more involved—steps are necessary, though.

The description of the algorithmic transformations reflects these two aspects.
In Section 4.3.1 the basic transformations leading to a working adaptive multigrid
method are derived. In Sections 4.3.2 and 4.3.3 the modifications leading to an algo-
rithm that can be implemented efficiently in HHG are introduced.

4.3.1 The basic algorithm

The starting point for developing an adaptive multigrid algorithm will be the full
multigrid algorithm (Algorithm 7 from Section 2.3). For the first analysis of the adap-
tive full multigrid algorithm, it is not even necessary to have the notion of hanging
nodes, at all. We assume a series of uniformly refined meshes Ωl (ls ≤ l ≤ l f) with a
hierarchical structure (Ωl−1 ⊂Ωl). This is the standard mesh hierarchy of HHG with
uniform refinement.

The first step away from standard full multigrid is to let a refinement criterion
determine, for every level l , a sub-mesh Cl on which the solution ul has to be com-
puted (see Definition 2). Cl may be computed statically, before the full multigrid
algorithm is started, or dynamically, for each level l after ul−1 has been computed.

Depending on Cl , two more sub-meshes can be defined.

• C l =
(
Ωl ∪ΓN

l

)
\ Cl denotes the sub-mesh on which ul does not have to be

computed.

• Rl denotes the points in C l that are coupled to points in Cl by the operator
Al . This set of points is called refinement boundary.

Fig. 4.3 gives an example of the hierarchical discretization of a two-dimensional
rectangular domainΩ, and the partitioning of the resulting meshesΩl . Like this fig-
ure, most illustrations and examples in this chapter use 2D meshes; the algorithms
do not depend on the mesh dimension, though, and work just as well in 3D. The
boundaries on the top and on the right of Ω are of Dirichlet type (ΓD); the bound-
aries on the bottom and on the left are of Neumann type (ΓN). On the coarsest level,
l = 0, Ω is discretized into the rectangular mesh Ω0 with 1× 5 interior points. Two
steps of regular refinement yield the meshes Ω1 and Ω2; the finest mesh has 7×23
interior points.

On level 0, since this is the coarsest level, the solution has to be computed on
all points. Therefore, the set C0 has to include all points in Ω0, except the Dirichlet
boundary points:

C0 = Ω0 ∪ΓN
0 .

85

www.manaraa.com

CHAPTER 4. ADAPTIVE MESH REFINEMENT

l = 0

Ω

(Neumann)
ΓN

(Dirichlet)
ΓD

C2

C 2

R2

l = 2

l = 1

Figure 4.3: 2D domain with the sub-domains used in adaptive refinement.

86

www.manaraa.com

4.3. FULL MULTIGRID ON MESHES WITH HANGING NODES

For level 1, we arbitrarily assume that the refinement criterion has selected a
sub-domain comprising the left two thirds of Ω1. C1 consists of 32 points; they are
marked with bullet points (•). The refinement boundary R1 is the row of points next
to C1; the points on R1 are marked with triangles (4). The rest of the points in C 1

are marked with circles (©). On level 2, the left third of Ω2 (64 points) is in C2. Like
onΩ1, we find R2 and C 2 to the right of C2.

On all levels, the partitioning is based on the assumption that the operators
Al couple mesh points only to their nearest neighbors. If the operators coupled a
greater range of points, the refinement boundary would have to be wider, and some
additional points of C l would also be on Rl .

For the following considerations it is sufficient to observe the algorithm on two
levels, l and l −1, between ls and l f :

l −1 ≥ ls and l ≤ l f .

The full approximation scheme will be used for the individual multigrid cycles
embedded in the full multigrid solver. While FAS is more complicated than the cor-
rection scheme, it can be transformed into an adaptive scheme more easily. In par-
ticular, the initialization of fl−1 in the recursion is not straightforward in an adaptive
correction scheme.

Adaptive smoothing

As stated above and as illustrated in Fig. 4.3, no hanging nodes are considered, for
now. The goal of the first step is merely to incorporate Cl into the standard full ap-
proximation scheme. To accomplish this, the smoother (Algorithm 1) is confined
to updating points in Cl only. In theory, this is only a slight modification; see Al-
gorithm 9. Implementing this modification may be quite challenging, though. The
implementation will be discussed in Section 4.5.

Algorithm 9: The adaptive smoother.

9.1 Algorithm smooth(Al , vl , fl , Cl , ν)
9.2 Perform ν iterations of an iterative solver with good error smoothing

properties on the linear system Al vl = fl on meshΩl , only updating
points in Cl

9.3 return vl

Algorithm 9 can now be employed by the full multigrid algorithm. Algorithm 10 is
the full approximation scheme with adaptive smoothing, Algorithm 11 is the corre-
sponding full multigrid algorithm. Compared to the original versions, Algorithms 7
and 8, some of the equations have been expanded, introducing additional variables.
They will be useful in the detailed analysis of the algorithm, but they do not need to
be computed explicitly in the implementation. The newly introduced variables are

• rl , the initial residual on level l ,

• dl−1, the restricted residual (the “defect”) on level l −1,

• cl−1, the correction computed in the recursion on level l −1, and

• ẽl , the approximation to the error on level l , computed from the coarse grid
correction.

87

www.manaraa.com

CHAPTER 4. ADAPTIVE MESH REFINEMENT

The parameter C stands for the set of all Cl (ls < l ≤ l f), in analogy to the parameter
A, which contains the operators on all levels.

Algorithm 10: The full approximation scheme with adaptive smoothing.

10.1 Algorithm FAScycle(A, vl , fl , R, R̂, P, l , ls , C , ν1, ν2)
10.2 if l = ls then
10.3 vl = solve(Al vl = fl)
10.4 else
10.5 v l = smooth(Al , vl , fl , Cl , ν1)
10.6 r l = fl − Al v l

10.7 dl−1 = R l−1
l r l

10.8 v∗
l−1 = R̂ l−1

l v l

10.9 fl−1 = dl−1 + Al−1v∗
l−1

10.10 vl−1 = FAScycle(A, v∗
l−1, fl−1, R, R̂, P, l −1, ls , C , ν1, ν2)

10.11 cl−1 = vl−1 − v∗
l−1

10.12 ẽl = P l
l−1cl−1

10.13 ṽl = v l + ẽl

10.14 vl = smooth(Al , ṽl , fl , Cl , ν2)
10.15 end
10.16 return vl

Algorithm 11: The full multigrid algorithm, using the full approximation
scheme and adaptive smoothing (Algorithm 10).

11.1 Algorithm fullmg(A, v, f , R, P, P̂ , ls , l f , µ, ν1, ν2)
11.2 uls = solve(Als uls = fls)
11.3 for l = ls +1. . . l f do
11.4 Initialize Cl according to refinement criteria

11.5 vl = P̂ l
l−1ul−1

11.6 rl = fl − Al vl

11.7 for i = 1. . .µ do
11.8 vl = FAScycle(A, vl , fl , R, R̂, P, l , ls , C , ν1, ν2)
11.9 end

11.10 ul = vl

11.11 end
11.12 return vl

A detailed analysis

While the adaptive full approximation scheme can be implemented just as it is for-
mulated in Algorithm 10, such an implementation would be of very limited use in
reducing the computational effort for solving the linear system. Unknowns vector,
right hand side, and residual are still defined on the entire mesh Ωl , and besides
the trimming of the smoothing step no numerical operations are saved, either. In
order to identify further possibilities of reducing computational operations, we will
analyze how each step of the algorithm affects the different regions ofΩ.

88

www.manaraa.com

4.3. FULL MULTIGRID ON MESHES WITH HANGING NODES

This analysis is illustrated in Fig. 4.4. The diagram shows the partitioning of a
1D mesh with 17 points on level l and 9 points on level l − 1. The points in Ωl are
marked with vertical bars (|). The points in Cl are marked with x-shaped crosses
(×). The points in Ωl−1 are marked with with circles (©). Cl−1 spans the whole of
Ωl−1 and is therefore not indicated separately. The boundary points are marked with
squares (ä); Dirichlet boundary conditions are imposed on both points. Neumann
boundary conditions are not covered in this part of the analysis, because they would
make no difference at this point, and including them would unnecessarily bloat the
following formulations.

The diagram shows the simplest example of an adaptively refined mesh, but at
the same time it is very general. Every other partitioning for adaptive refinement—
whether it were applied to higher-dimensional or to more complicated domains—
can be broken down to this abstract structure: two disjoint groups of mesh points,
Cl and C l , that are separated by a refinement boundary, Rl . Only when it comes to
domain boundaries, a 1D picture is not enough to illustrate all cases that are possi-
ble in two or more dimensions. In 1D Rl can never be adjacent to Γl , because it is
enclosed by Cl and C l . In higher dimensions this is possible. However, since Algo-
rithms 11 and 10 are not concerned with setting boundary conditions (the bound-
aries are assumed to be initialized correctly), it is possible at this point to abstain
from a precise formulation in favor of simplicity.

The following line by line analysis starts at line line 11.5 of Algorithm 11. We
assume that Al−1ul−1 = fl−1 has been solved for ul−1 and Cl has been initialized.
The analysis covers the prolongation of the solution from level l − 1 to level l and
the first FAS-cycle (i. e., i = 1 in Algorithm 11) on level l . The analysis would be the
same for the subsequent FAS-cycles (i = 2. . .µ), except for a few details that will be
highlighted at the end of this section.

Line 11.5. The prolongation of the solution from level l−1 to level l affects points
in Cl and in C l in the same way. This is reflected in the diagram by a box covering
both partitions. The diagram also shows that on the boundary vl is not obtained by
prolongation, but that it is initialized with the problem’s boundary values.

Line 11.6. The initial residual is determined from the initial prolongation of the
solution by

rl = fl − Al vl = fl − Al P̂ l
l−1ul−1 in Cl ∪C l . (4.1)

On the boundary the residual is not defined.
Line 10.5. Pre-smoothing acts only on points in Cl now. Therefore,

v l = vl in C l ∪Γl . (4.2)

Line 10.6. The general formula for computing the residual after the pre-smooth-
ing step is r l = fl − Al v l . However, since v l = vl in C l , there is an area in which
the residual is not changed, i. e., r l = rl = fl − Al vl = fl − Al P̂ l

l−1ul−1. This formula-
tion does not look like a simplification at this point, but it will soon become useful.
Therefore, we want to locate precisely in which part of C l it is valid.

v l influences r l only through the multiplication with Al , so the shape of Al de-
termines how far into C l a change of vl in Cl will spread. If the stencil of Al couples
mesh points only to their nearest neighbors, changes to vl will spread into Rl , but
not any further. Thus, it is valid to use

r l = rl = fl − Al P̂ l
l−1ul−1 in C l \Rl . (4.3)

89

www.manaraa.com

CHAPTER 4. ADAPTIVE MESH REFINEMENT
R

l

Γ
l

Γ
l

C
l

C
l

v
l =

P̂
ll−

1 u
l−

1

r
l =

fl −
A

l v
l

v
l =

smooth
(A

l ,v
l ,

fl ,C
l ,ν

1)
v

l =
v

l

r
l =

fl −
A

l v
l

r
l =

r
l

d
l−

1 =
R

l−
1

l
r

l
d

l−
1 =

R
l−

1
l

fl −
A

l−
1 u

l−
1

v ∗l−
1 =

R̂
l−

1
l

v
l

v ∗l−
1 =

u
l−

1

fl−
1 =

d
l−

1 +
A

l−
1 v ∗l−

1
fl−

1 =
R

l−
1

l
fl

v
l−

1 =
FAScycle

(A
,v ∗l−

1 ,
fl−

1 ,R
,R̂

,P
,l−

1,ls ,C
,ν

1 ,ν
2)

c
l−

1 =
v

l−
1 −

v ∗l−
1

ẽ
l =

P
ll−

1 c
l−

1

ṽ
l =

v
l +

ẽ
l

v
l =

smooth
(A

l ,ṽ
l ,

fl ,C
l ,ν

2)
v

l =
ṽ

l

v
l =

u
l

v
l =

u
l

v ∗l−
1 =

u
l−

1
v ∗l−

1 =
u

l−
1

v
l−

1 =
v

l−
1

v
l−

1 =
v

l−
1

cl−
1 =

0
cl−

1 =
0

ṽ
l =

v
l

ṽ
l =

v
l

v
l =

v
l

v
l =

v
l

v
l =

v
l

v
l =

v
l

Line
11.5

11.6

10.5

10.6

10.7

10.8

10.9

10.10

10.11

10.12

10.13

10.14

in Algs.

F
igu

re
4.4:D

iagram
o

fth
e

fu
llm

u
ltigrid

algo
rith

m
w

ith
th

e
fu

llap
p

roxim
atio

n
sch

em
e

an
d

ad
ap

tive
sm

o
o

th
in

g.T
h

e
d

iagram
sh

ow
s

th
e

p
ro

p
aga-

tio
n

fro
m

levell−
1

to
levell

an
d

th
e

fi
rstFA

S-cycle
o

n
levell.

90

www.manaraa.com

4.3. FULL MULTIGRID ON MESHES WITH HANGING NODES

This “lucky” choice of Rl is no coincidence, but it is in fact founded on this prop-
erty of Al . The width of the refinement boundary layer should be chosen such that
it shields changes in Cl from the rest ofΩl .

Line 10.7. The defect on level l −1 is, in general, computed as dl−1 = R l−1
l r l . In

a part of Ωl−1 (4.3) can be used to modify the formula for dl−1. We want to identify
that part, because the modification will be used in the computation of fl−1, later on.

According to (4.3), the necessary property, r l = rl , is fulfilled in C l \ Rl , but not
in Cl ∪Rl . The shape of the restriction operator R l−1

l determines how this partition-
ing is transferred to the coarse mesh. Equation (4.4) can be used on all points of the
coarse mesh that are not connected to points in Cl ∪Rl by the restriction opera-
tor. The standard restriction operator (introduced in Section 2.3.2) uses only nearest
neighbor points on the fine mesh to compute the values on the coarse mesh. For
example, the value of dl−1 at point 10 is computed from the values of r l at points 9,
10, and 11. They are all inΩl \Rl , thus, (4.4) can be used at point 10.

Based on these considerations, the formula for the defect can be expanded to

dl−1 = R l−1
l r l = R l−1

l rl

= R l−1
l

(
fl − Al P̂ l

l−1ul−1

)
= R l−1

l fl −R l−1
l Al P̂ l

l−1ul−1

= R l−1
l fl − Al−1ul−1 inΩl−1 \ (Cl ∪Rl) .

(4.4)

If the restriction operator used a wider range of points, including also point 8,
(4.4) could not be used at point 10. Here, and in several occasions below, we as-
sume a compact operator that has only nearest-neighbor dependencies. The theory
of adaptive refinement, as it is developed here, is also valid for wider stencils; the
implementation in HHG, however, will heavily exploit the compactness of the op-
erators, because its computational efficiency—especially on parallel computers—
depends strongly on the compactness of the operators.

Line 10.8. After the defect, the unknowns are initialized on the coarse mesh. In
the sub-domain Ωl−1 ∩Cl the restriction v∗

l−1 = R̂ l−1
l v l is computed. In Ωl−1 ∩C l

this restriction does not have to be computed. Here v l = vl , because no smoothing
took place in C l . Therefore, v∗

l−1 can be calculated as

v∗
l−1 = R̂ l−1

l v l = R̂ l−1
l vl

= R̂ l−1
l P̂ l

l−1ul−1 inΩl−1 ∩C l .

Recall from Section 2.3.4 that injection is used for the restriction of the unknowns
(the operator R̂ l−1

l). Furthermore, the interpolation P̂ l
l−1 is also an injection—from

the coarse to the fine mesh—at the points that coincide on coarse and fine mesh.
Therefore, the operator product P̂ l

l−1R̂ l−1
l does not alter ul−1, and the unknowns on

the coarse mesh can be initialized as

v∗
l−1 = ul−1 inΩl−1 ∩C l . (4.5)

Line 10.9. With dl−1 and v∗
l−1 set up, the right hand side can be initialized. In

Ωl−1 ∩ (Cl ∪Rl), where (4.4) and (4.5) can not be used, fl−1 = dl−1 + Al−1v∗
l−1. In

Ωl−1 \ (Cl ∪Rl), these equations can be used, and the right-hand side on the coarse
mesh can simply be initialized with the restricted right-hand side of the original fine

91

www.manaraa.com

CHAPTER 4. ADAPTIVE MESH REFINEMENT

problem on the fine mesh

fl−1 = dl−1 + Al−1v∗
l−1

= R l−1
l fl − Al−1ul−1 + Al−1ul−1

= R l−1
l fl inΩl−1 \ (Cl ∪Rl) .

(4.6)

This is already a helpful result, because it eliminates the need to compute dl−1 in this
region. On the other hand, fl would be required in all of Ωl to compute fl−1, which
would make all further effort to reduce computational complexity a vain endeavor.
Stated more optimistically, it is worthwhile to find out if R l−1

l fl can be replaced by
fl−1.

There is no general answer to this question, because the function f of the appli-
cation’s mathematical model, which is used to initialize fl , may be of any type. The
full-weighting restriction used in HHG, for example, can only restrict polynomials
up to second degree exactly.

However, there is still reason to assume that, in practice, fl−1 = R l−1
l fl is—almost

and most of the time, at least—fulfilled: if the right-hand side is so rough that R l−1
l fl

is not even approximately equal to fl−1, it is questionable whether solving on level l−
1 would be sufficiently accurate, at all. In other words, in a region where the right-
hand side is discontinuous or very oscillating, the solution must probably be com-
puted on the fine mesh, anyway. The literature also endorses initializing fl−1 in
Ωl−1 \ (Cl ∪Rl) by discretizing f on level l −1 (see, e. g., [35]). With the knowledge
that the implementation of this algorithm will not be a black-box solver, anyway, we
choose this pragmatic approach, keeping in mind that it will not work in all cases
one can think of.

Line 10.10. Now all the variables are initialized and the adaptive FAS-cycle (Algo-
rithm 10) can be executed recursively onΩl−1. It solves the linear system Al−1vl−1 =
fl−1 for vl−1. Like in the standard FAS algorithm, vl−1 may be only a good approxi-
mation, not the exact solution, to A−1

l−1 fl−1, but like in the standard algorithm, this
does not pose a problem here, either. Note that the recursion provides a solution
on the complete mesh Ωl−1, even if Cl−1 is not, as in Fig. 4.4, identical with Ωl−1.
Whether the vl−1 is needed on all ofΩl−1 will be analyzed later on in this section.

Line 10.11. Since the recursion has potentially modified the unknowns vector
everywhere on Ωl−1, the correction cl−1 = vl−1 − v∗

l−1 has to be computed on the
complete meshΩl−1, too. On the boundary, cl−1 = 0.

Line 10.12. ẽl , the approximation to the error on the fine mesh, is computed
by prolongating cl−1. The formula ẽl = P l

l−1cl−1 holds on all of Ωl and cannot be
simplified anywhere.

Line 10.13. The same applies to ṽl = v l +ẽl . In C l , where no pre-smoothing took
place, v l could be replaced by vl , but this would not be of any use in improving the
algorithm.

Line 10.14. Post-smoothing, like pre-smoothing, changes ṽl only in Cl . There-
fore,

vl = ṽl in C l ∪Γl .

With the post-smoothing step, the FAS-cycle is complete. The diagram in Fig. 4.4
gives a complete picture of how the algorithm actually affects the different parts of
the meshes. The global picture reveals: there is no single dividing line between the
refined and non-refined areas. While the transformations of the formulas that have

92

www.manaraa.com

4.3. FULL MULTIGRID ON MESHES WITH HANGING NODES

been derived above are straightforward, it is still not immediately visible which cal-
culations can be saved in the implementation. Therefore, the next step is to analyze
the data dependencies of each algorithmic step. With this information it will be pos-
sible to create an efficient implementation stripped of unnecessary calculations.

More FAS-cycles on level l

The discussion up to now made use of the observation that v l = vl = P̂ l
l−1ul−1 in

regions where no smoothing is done, i. e., in C l . For the first FAS-cycle on level l this
is obvious. Is this assumption still correct for subsequent FAS-cycles, though?

Expanding the formula for vl in C l at the end of the first cycle using line 10.8
and lines 10.11–10.14 yields

vl = ṽl (line 10.14)

= v l + ẽl (line 10.13)

= v l +P l
l−1cl−1 (line 10.12)

= v l +P l
l−1(vl−1 − v∗

l−1) (line 10.11)

= v l +P l
l−1vl−1 −P l

l−1R̂ l−1
l v l (line 10.8)

≈ P l
l−1vl−1 in C l .

(4.7)

In general, vl−1 6= ul−1, as the following reasoning shows. In the FAS-cycles start-
ing from level l , fl−1 is initialized using information computed on level l . Thus, fl−1

will be different than in the FAS-cycles up to level l−1, where it was initialized by dis-
cretizing f . Thus, since fl−1 globally influences the solution of Al−1vl−1 = fl−1, the
assumption that vl = P̂ l

l−1ul−1 in C l does generally not hold for subsequent FAS-
cycles.

The above line by line analysis of the algorithm is not invalidated by this change,
though. None of the derivations introduced depends on the assumption that ul−1

contains the approximation computed by the last FAS-cycle on level l −1. The rele-
vant observations, e. g., that ul−1 cancels out in the calculation of fl−1 in (4.6), hold
independently of the value of ul−1.

One more interesting fact shall be highlighted at this point. Equation (4.7) shows
that the FAS-cycle on level l changes vl also in C l (i. e., vl is not simply an inter-
polation of ul−1 there), even though Algorithm 10 does not do any real work in C l .
In other words, the FAS-cycle with adaptive smoothing improves the approximation
on the coarser meshes also in areas that are not refined.

4.3.2 The improved algorithm

The way towards computational efficiency is described in two parts. The first set of
modifications is straightforward and does not require any additional assumptions
about the underlying problem or the numerical method. In the second part, the al-
gorithm is optimized further to suit an implementation that uses HHG’s data struc-
tures and its communication infrastructure. Two diagrams accompany the remarks
and highlight the changes of each step.

The first diagram is shown in Fig. 4.5. It has the same structure and uses the
same notation as the diagram in Fig. 4.4. Compared to the original one, gray boxes
have been inserted where computations are not necessary. A gray box in the dia-
gram means that the corresponding formula does not have to be computed in the

93

www.manaraa.com

CHAPTER 4. ADAPTIVE MESH REFINEMENT

sub-mesh that is grayed out. In the following paragraphs, the rationale for the loca-
tions of these areas will be established. In the analysis, two additional refinement
boundary layers will come into the focus of attention. They are marked with RE

l and

REE
l in the diagram and are defined as follows.

• RE
l , the external refinement boundary, is the set of all points in C l \ Rl that

are coupled to points in Rl .

• REE
l , the second external refinement boundary, is the set of all points in C l \(

Rl ∪RE
l

)
that are coupled to points in RE

l .

The one line that determines the shape of the whole diagram does not stand out
at first glance: it is the defect calculation (line 10.7). Starting from here, it is straight-
forward to derive in which parts of Ωl and Ωl−1 the other variables need to have
their correct values.

As the diagram shows, dl−1 depends on r l in Cl−1∩ (Cl ∪Rl). Outside that area,
dl−1 does not depend on values from the fine mesh (except for fl , which, as argued
above, can be replaced with fl−1). So, where inΩl does r l have to be computed? The
answer depends, as in several occasions before, on the scope of R l−1

l , and, as usually,

R l−1
l is assumed to have only nearest-neighbor couplings. Under that premise, r l

needs to be computed in Cl ∪Rl ∪RE
l . The area is shown in the diagram (line 10.6).

Two different formulas are employed for obtaining r l in this area. In Cl ∪Rl

r l depends on v l ; in RE
l it depends only on rl . The dependencies are fulfilled by the

two lines above line 10.6 in the diagram. Assuming that Al has only nearest-neighbor
couplings, v l has to be provided on Cl ∪Rl ∪RE

l and on the part of Γl adjacent to Cl

(see line 10.5). rl has to be computed only on RE
l (see line 11.6), because it is simply

assigned—without applying any operator—to r l in line 10.6.
On Cl v l is created by smoothing, outside Cl it is equal to vl . Therefore, vl must

be available in Cl ∪Rl ∪RE
l and on Γl at Cl . The formula for rl also depends on

vl , multiplied with Al . The latter dependency is also the one that creates the need
for REE

l , the second external refinement boundary: for computing rl on RE
l , vl is

needed on Rl , RE
l , and REE

l . Line 11.5 initializes vl by prolongating the solution

on the coarse mesh, ul−1, onto Cl ∪Rl ∪RE
l ∪REE

l . On the mesh boundary, vl is
initialized with the problem’s boundary values.

Now, the first part of Fig. 4.5 (lines 11.5–10.10) is complete. To complete the sec-
ond part, another anchor for deriving the data dependencies has to be found. The
argument which comes to mind first is to restrict line 10.14 to Cl , because that is the
area where the solution on level l has to be computed, according to the refinement
criterion. On second glance, this is sufficient only in the first FAS-cycle on level l .
In the likely case that more cycles follow, line 10.14 has to cover the same area as
line 11.5 in order to fulfill the dependencies of the following cycle. Therefore, we re-
quire vl to be present on Cl ∪Rl ∪RE

l ∪REE
l and on the part of Γl adjacent to that

area. On Cl vl is computed by smoothing, outside Cl the variable is equal to ṽl .
ṽl is computed in line 10.13 by adding the error approximation ẽl to the pre-

smoothed unknowns. The addition does not expand the data dependencies, thus, ẽl

is also required on Cl ∪Rl ∪RE
l ∪REE

l and on the appropriate part of Γl .
Since ẽl is computed from cl−1 via the prolongation operator, cl−1 may need to

be available on a larger area than ẽl . Let us examine the boundaries of the active
domain in line 10.12. The leftmost point only exists on the fine mesh. Therefore, the
values of cl−1 on the adjacent points on the coarse mesh are used for interpolating ẽl

94

www.manaraa.com

4.3. FULL MULTIGRID ON MESHES WITH HANGING NODES

R
l

Γ
l

Γ
l

C
l

C
l

R
E l

R
E

E
l

ṽ l
=

v l
+ẽ

l

v l
=

P̂
l l−

1
u

l−
1

r l
=

f l
−A

lv
l

v
l
=

sm
oo

th
(A

l,
v l

,
f l

,C
l,
ν

1
)

v
l
=

v l

r l
=

f l
−

A
lv

l
r l

=
r l

d
l−

1
=

R
l−

1
l

r l

v
∗ l−

1
=

R̂
l−

1
l

v
l

v
∗ l−

1
=

u
l−

1

f l
−1

=
d

l−
1
+

A
l−

1
v l

−1
f l
−1

=
R

l−
1

l
f l

v l
−1

=
FA

Sc
yc

le
(A

,v
∗ l−

1
,

f l
−1

,R
,R̂

,P
,l

−1
,l

s,
C

,ν
1

,ν
2

)

c l
−1

=
v l

−1
−v

∗ l−
1

ẽ l
=

P
l l−

1
c l

−1

ṽ l
=

v
l
+ẽ

l

v l
=

sm
oo

th
(A

l,
ṽ l

,
f l

,C
l,
ν

2
)

v l
=

ṽ l

v l
=

u
l

v
∗ l−

1
=

u
l−

1
v
∗ l−

1
=

u
l−

1

v l
−1

=
v
∗ l−

1
v l

−1
=

v
∗ l−

1

c l
−1

=
0

ṽ l
=

v l

v
l
=

v l

v l
=

v l

10
.8Line

11
.5

11
.6

10
.5

10
.6

10
.7

10
.9

10
.1

0

10
.1

1

10
.1

2

10
.1

3

10
.1

4

inAlgs.

F
ig

u
re

4.
5:

D
ia

gr
am

o
ft

h
e

ad
ap

ti
ve

fu
ll

m
u

lt
ig

ri
d

al
go

ri
th

m
w

it
h

th
e

im
p

ro
ve

d
fu

ll
ap

p
ro

xi
m

at
io

n
sc

h
em

e.

95

www.manaraa.com

CHAPTER 4. ADAPTIVE MESH REFINEMENT

on the fine mesh point. One of them is on the boundaryΓl−1, the other one is on Cl−1

(see line 10.11). The rightmost point of the active domain in line 10.12, REE
l , exists

on bothΩl andΩl−1. Thus, it can be interpolated from the coarse mesh by injection,
and the area for computing cl−1 does not have to be expanded on that end. All in all,
cl−1 has to be computed on Cl−1 ∩

(
Cl ∪Rl ∪RE

l ∪REE
l

)
and initialized to zero on

Γl−1 adjacent to that area.

Implementation issues

Now that the individual lines have been analyzed, let us take a step back and ex-
amine the diagram in its entirety. Data on the fine mesh has to be computed on
the points in Cl and on the three refinement boundary layers Rl , RE

l , and REE
l .

At first glance, this observation is not problematic, but how about the implemen-
tation of this algorithm? If it were for an implementation using regular grids with
global indexing, no parallelization, and no interest in efficient data structures, it still
would not be a problem. Taking away one of these advantages—HHG can not rely
on a single one of them—makes the implementation much more challenging. As
Section 4.5.2 will show, treating RE

l efficiently in the implementation requires ad-

ditional data structures and program code. Additionally handling REE
l would make

the implementation even more complex. Therefore, the goal for the final version of
the algorithm is to eliminate the need for REE

l . The resulting algorithm will be much
easier to implement.

4.3.3 The final algorithm

To eliminate the second external refinement boundary (REE
l), the defect dl−1 at the

refinement boundary will be computed with a modified formula. Fig. 4.5 shows that
the residual calculation (line 10.6) partly accesses entries in the unknowns vector
that have not been altered since the initial prolongation (in line 11.5). This observa-
tion endorses the question whether data that is not modified is affecting the results
of the computation at all. We will show that it is possible to segregate this data and
eliminate it from the computation.

For analyzing the effect of computations on sub-meshes, the index notation xl [i]
will be used. xl [i] refers to the value of variable x on an individual point i of the mesh
on level l . All mesh points adjacent to point i on level l , the neighborhood of point i ,
will be denoted by Nl (i).

Using this notation, the restriction can be written as a weighted sum. The defect
at each coarse mesh point (line 10.7) is the weighted sum of the residuals at the
neighboring fine mesh points, i. e.,

dl−1[i] = ∑
j∈Nl (i)

(
wi j r l [j]

)
(4.8)

with the weights wi j . The neighborhood of point i can generally be split into two
disjoint sets N S

l (i) and N P
l (i). The sub-set N S

l (i) contains all points of Nl (i) at which
r l depends on smoothed values of v l :

N S
l (i) = Nl (i)∩ (Cl ∪Rl) .

The sub-set N P
l (i) contains the remaining points,

N P
l (i) = Nl (i) \ N S

l (i) ,

96

www.manaraa.com

4.3. FULL MULTIGRID ON MESHES WITH HANGING NODES

where the residual depends only on prolongated (i. e., non-smoothed) values of v l .
One of the two sub-sets may be empty, depending on the location of point i .

This splitting is useful in the elimination of REE
l , because N S (i)∩RE

l =; for any
point i . Splitting the sum in (4.8) according to this partitioning yields

dl−1[i] = ∑
j∈N S

l (i)

(
wi j r l [j]

)+∑
j∈N P

l (i)

(
wi j r l [j]

)
. (4.9)

If the sum over j ∈ N P
l (i) could be eliminated from this equation, r l would not have

to be computed on RE
l , and, consequently, vl would not have to be provided on

REE
l .

The residual r l at points in N P
l (i) is the same as if it had been calculated right

after the prolongation (line 11.5) (i. e., before any smoothing steps), because points
in N P

l (i) are not coupled to any points that are affected by smoothing. To examine
this relation, we call the residual after prolongation rl and its restriction to the coarse
mesh d̂l−1. The variables are defined as

rl = fl − Al vl and

d̂l−1 = R l−1
l rl .

d̂l−1 at point i is, analogous to (4.9), a weighted sum of neighboring entries of rl :

d̂l−1[i] = ∑
j∈N S

l (i)

(
wi j rl [j]

)+∑
j∈N P

l (i)

(
wi j rl [j]

)
. (4.10)

The residual after smoothing is equal to the residual before smoothing at mesh points
which are not coupled to Cl , i. e.,

r l [j] = rl [j] for all neighbors j ∈ N P
l (i) of any point i ∈Ωl .

Thus, rl can be substituted for r l in the corresponding sum in (4.9):

dl−1[i] = ∑
j∈N S

l (i)

(
wi j r l [j]

)+∑
j∈N P

l (i)

(
wi j rl [j]

)
. (4.11)

Subtracting (4.10) from (4.11) eliminates the sum over the points in N P
l (i), leav-

ing

dl−1[i] = d̂l−1[i]+∑
j∈N S

l (i)

(
wi j

(
r l [j]− rl [j]

))
. (4.12)

This means that dl−1 can easily be computed without using residual values from
RE

l , provided that d̂l−1 and rl are known. While rl can be acquired on the necessary
mesh points simply by computing it after the prolongation, the attempt to compute
d̂l−1 from rl would create a “chicken and egg” dilemma: in order to compute it (via
(4.10)), the values of rl at points on RE

l are required, yet this is precisely what we
want to get rid of.

The goals is thus to compute d̂l−1 in a different way. Expanding the formula for
d̂l−1 yields

d̂l−1 = R l−1
l rl

= R l−1
l

(
fl − Al vl

)
= R l−1

l fl −R l−1
l Al P̂ l

l−1ul−1 .

97

www.manaraa.com

CHAPTER 4. ADAPTIVE MESH REFINEMENT

As already discussed in Section 4.3.1, R l−1
l fl can be replaced with fl−1.

In order to simplify the remainder of the equation, one approach is to make use
of the fact that HHG’s operators fulfill the Galerkin condition,

Al−1 = R l−1
l Al P l

l−1 .

Unfortunately, P̂ appears instead of P in the equation. Thus, we have to make the
somewhat painful restriction that P̂ = P in Algorithm 11. Recall from Section 2.3.3
that for P̂ generally a higher-order interpolation is required than for P , because it
needs to interpolate the solution, which is not necessarily a smooth function. Us-
ing a first-order operator here may have the consequence that more FAS-cycles are
required on level l , and, in the worst case, full multigrid does not have optimal com-
plexity, any more. That being said, the winning argument will once more be a prac-
tical one. In the current HHG implementation, only the linear interpolation is avail-
able, because HHG’s data structures and communication algorithms only allow for
data exchange between directly adjacent mesh points. A higher-order interpolation
operator creates data dependencies between points that are not nearest neighbors.
In order to implement it, new data structures would have to be added to HHG. If they
are available, they will also simplify handling a second external refinement bound-
ary, which this section attempts to get rid of. To summarize: the restriction P̂ = P
does not deteriorate HHG’s current convergence or the quality of the solution; when
a higher-order interpolation is implemented, the restriction will not be needed, any
more.

Thus, the formula for d̂l−1 can be simplified further to

d̂l−1 = fl−1 −R l−1
l Al P l

l−1ul−1

= fl−1 − Al−1ul−1 .

This is the residual of the final approximation to the solution on level l−1 (line 11.10
in Algorithm 11), which will be denoted with rl−1:

rl−1 = fl−1 − Al−1ul−1 . (4.13)

The relation

d̂l−1 = rl−1

can now be substituted in (4.12). The resulting formula,

dl−1[i] = rl−1[i]+∑
j∈N S

l (i)

(
wi j

(
r l [j]− rl [j]

))
, (4.14)

is easy to compute and can thus be built into the adaptive full multigrid algorithm,
provided that rl−1 is computed.

The final versions of the algorithms are shown in Algorithm 12 (the full approxi-
mation scheme) and Algorithm 13 (the full multigrid solver). The computations are
now restricted to the regions derived in Section 4.3.2. For every line, Algorithms 12
and 13 state on which part of the mesh it has to be computed. If the formula for
a statement varies among the mesh regions, the different versions are merged into
one algorithmic line. The set R I

l is new, it will be introduced below.
The full multigrid algorithm has been expanded by the calculation of rl−1 at

the beginning of each level (line 13.5) and the calculation of rl after prolongation

98

www.manaraa.com

4.3. FULL MULTIGRID ON MESHES WITH HANGING NODES

(line 13.7). The full approximation scheme has been expanded by residual calcula-
tions after the recursion (line 12.11) and after the coarse grid correction (line 12.15).
Both lines are required for the computation of dl−1 = rl−1 +R l−1

l

(
r l − rl

)
in the sub-

sequent multigrid cycle: since line 12.10 possibly changes vl−1 in all of Cl−1, rl from
line 13.7 and rl−1 from line 13.5, which are based on v∗

l−1 6= vl−1, are not correct, any
more.

One question remains to be answered before the algorithm is complete: on which
parts of Ωl and Ωl−1 do the newly introduced residuals rl and rl−1 have to be com-
puted? Since dl−1 can be computed in the traditional way in most parts of Cl−1, it
is clearly not necessary to compute rl and rl−1 everywhere on Cl and Cl−1, respec-
tively.

The first step is to find out where dl−1 can be computed the traditional way, and
where dl−1 has to be computed via (4.14). Provided that r l is available on Cl ∪Rl ,
but not on RE

l , dl−1 = R l−1
l r l can be computed on Cl−1 ∩Cl , but not on Cl−1 ∩Rl .

In order to make (4.14) more conveniently usable in Algorithm 12, we define

rl = r l = 0 onΩl \ (Cl ∪Rl) ,

i. e., in those regions where r l is not used, anyway. Now r l [j]− rl [j] = 0 for all j in
N P

l (i), and the sum over j ∈ N P
l (i) vanishes for all points i onΩl , and thus (4.14) can

be written as

dl−1[i] = rl−1[i]+∑
j∈N S

l (i)

(
wi j

(
r l [j]− rl [j]

))+∑
j∈N P

l (i)

(
wi j

(
r l [j]− rl [j]

))
,

This variant formally includes all couplings of the restriction operator again. The two
separate sums can be combined to a single sum over all j ∈ Nl (i), which is equivalent
to the restriction operator R l−1

l . The indices can be removed, and we obtain

dl−1 = rl−1 +R l−1
l

(
r l − rl

)
.

The defect computation in Algorithm 12 (line 12.7) can now be written concisely as

dl−1 =
{

R l−1
l r l on Cl−1 ∩Cl

rl−1 +R l−1
l

(
r l − rl

)
on Cl−1 ∩Rl ,

provided that the residuals rl and r l are initialized to zero on RE
l in lines 13.7 and

12.6.
For the residual on the coarse mesh, rl−1, this means that it has to be computed

on Cl−1 ∩Rl (see lines 13.5 and 12.11). The residuals on the fine mesh, rl and r l ,
have to be initialized to zero on RE

l . In order to specify where their actual values

have to be computed, we define the internal refinement boundary R I
l as the set of

all points in Cl that are coupled to points in Rl . Using this definition, the required
sub-mesh for computing rl can be specified as R I

l ∪Rl (lines 13.7 and 12.15). r l

(line 12.6) has to be computed on Cl ∪R I
l ∪Rl , which can be reduced to Cl ∪Rl ,

because R I
l ⊂Cl .

Fig. 4.6 shows Algorithms 12 and 13 in the familiar diagram form. Coming from
Fig. 4.5, the sub-mesh REE

l has been removed, and R I
l has been added. Also the new

residual computations have been added. The diagram completes the presentation of
the adaptive full multigrid algorithm with full approximation in its final version. The
implementation in HHG, described in Section 4.5, is based on this version.

99

www.manaraa.com

CHAPTER 4. ADAPTIVE MESH REFINEMENT

Algorithm 12: The adaptive full approximation scheme.

12.1 Algorithm FAScycle(A, vl , fl , R, R̂, P, l , ls , ν1, ν2)
12.2 if l = ls then
12.3 vl = solve(Al vl = fl) on Cl =Ωl

12.4 else

12.5 v l =
{

smooth(Al , vl , fl ,Cl ,ν1) on Cl

vl on Rl ∪RE
l

12.6 r l =
{

fl − Al v l on Cl ∪Rl

0 on RE
l

12.7 dl−1 =
{

R l−1
l r l on Cl−1 ∩Cl

rl−1 +R l−1
l

(
r l − rl

)
on Cl−1 ∩Rl

12.8 v∗
l−1 =

{
R̂ l−1

l v l on Cl−1 ∩Cl

ul−1 on Cl−1 ∩C l

12.9 fl−1 =
{

dl−1 + Al−1v∗
l−1 on Cl−1 ∩ (Cl ∪Rl)

R l−1
l f Ωl on Cl−1 ∩

(
C l \Rl

)
12.10 vl−1 = FAScycle(A, v∗

l−1, fl−1, R, R̂, P, l −1, ls , C , ν1, ν2) on Cl−1

12.11 rl−1 = fl−1 − Al−1vl−1 on Cl−1 ∩Rl

12.12 cl−1 = vl−1 − v∗
l−1 on Cl−1 ∩ (Cl ∪Rl)

12.13 ẽl =
{

P l
l−1cl−1 on Cl ∪Rl

P l
l−1

(
vl−1 − v∗

l−1

)
on RE

l

12.14 ṽl = v l + ẽl on Cl ∪Rl ∪RE
l

12.15 rl = fl − Al ṽl on R I
l ∪Rl

12.16 vl =
{

smooth(Al , ṽl , fl ,Cl ,ν2) on Cl

ṽl on Rl ∪RE
l

12.17 end
12.18 return vl

Algorithm 13: The adaptive full multigrid algorithm, using the adaptive
full approximation scheme (Algorithm 12).

13.1 Algorithm fullmg(A, v, f , R, R̂, P, P̂ , ls , l f , µ, ν1, ν2)
13.2 uls = solve(Als uls = fls) on Cls

13.3 for l = ls +1. . . l f do
13.4 Initialize Cl according to refinement criteria
13.5 rl−1 = fl−1 − Al−1ul−1 on Cl−1 ∩Rl

13.6 vl = P̂ l
l−1ul−1 on Cl ∪Rl ∪RE

l

13.7 rl =
{

fl − Al vl on R I
l ∪Rl

0 on RE
l

13.8 for i = 1. . .µ do
13.9 FAScycle(A, vl , fl , R, R̂, P, l , ls , ν1, ν2)

13.10 end
13.11 ul = vl

13.12 end
13.13 return ul

100

www.manaraa.com

4.3. FULL MULTIGRID ON MESHES WITH HANGING NODES
R

l

Γ
l

Γ
l

C
l

C
l

R
E l

R
I l

v l
=

P̂
l l−

1
u

l−
1

r l
=

f l
−

A
lv

l

v
l
=

sm
oo

th
(A

l,
v l

,
f l

,C
l,
ν

1
)

v
l
=

v l

r l
=

f l
−

A
lv

l

d
l−

1
=

R
l−

1
l

r l
d

l−
1
=

r l
−1

+R
l−

1
l

(r l
−r

l)
v
∗ l−

1
=

R̂
l−

1
l

v
l

v
∗ l−

1
=

u
l−

1

f l
−1

=
d

l−
1
+

A
l−

1
v
∗ l−

1
f l
−1

=
R

l−
1

l
f l

v l
−1

=
FA

Sc
yc

le
(A

,v
∗ l−

1
,

f l
−1

,R
,R̂

,P
,l

−1
,l

s,
C

,ν
1

,ν
2

)

c l
−1

=
v l

−1
−v

∗ l−
1

ẽ l
=

P
l l−

1
c l

−1

ṽ l
=

v
l
+ẽ

l

v l
=

sm
oo

th
(A

l,
ṽ l

,
f l

,C
l,
ν

2
)

v l
=

ṽ l

v l
=

u
l

v
∗ l−

1
=

u
l−

1
v
∗ l−

1
=

u
l−

1

v l
−1

=
v
∗ l−

1
v l

−1
=

v
∗ l−

1

c l
−1

=
0

ṽ l
=

v l

v
l
=

v l

v l
=

v l

r l
=

0

r l
=

0

r l
=

f l
−

A
lṽ

l
r l

=
0

r l
−1

=
f l
−1

−
A

l−
1

v l
−1

Line
13

.6

13
.7

12
.5

12
.6

12
.7

12
.8

12
.9

12
.1

0

12
.1

2

12
.1

3

12
.1

4

12
.1

6

inAlgs.

12
.1

5

12
.1

1

F
ig

u
re

4.
6:

D
ia

gr
am

o
ft

h
e

ad
ap

ti
ve

fu
ll

m
u

lt
ig

ri
d

al
go

ri
th

m
w

it
h

o
n

ly
o

n
e

ex
te

rn
al

re
fi

n
em

en
tb

o
u

n
d

ar
y

la
ye

r.

101

www.manaraa.com

CHAPTER 4. ADAPTIVE MESH REFINEMENT

4.4 An efficient adaptive refinement algorithm

The central goal for implementing adaptive mesh refinement in HHG is to main-
tain the good performance and parallel scalability of the implementation. Therefore,
the design guidelines of the original implementation (see Section 2.4)—hardware-
friendly data structures, communication grouping, and communication locality—
are maintained in the adaptive implementation. The basis for the implementation
are the full multigrid and FAS algorithms that are defined in Algorithms 13 and 12
and visualized in Fig. 4.6.

4.4.1 Error estimation

Reliably estimating the error of the computed solution is a highly application-specific
task, and so is its implementation. Generally reliable methods like measuring the
curvature of the solution are computationally expensive; cheap methods like evalu-
ating the residual norm deliver entirely unfeasible results in many cases. Since the
adaptive implementation presented here does not target a specific application, the
error estimation was not in the focus of the work.

4.4.2 Mesh refinement

In order to understand the implementation, it is necessary to think about what it ac-
tually means to “refine a mesh”. What are the implications of a finite element getting
refined? Which components of the solver have to be informed about a primitive’s
refinement, and which data structures need to be allocated on the refined mesh?

Fig. 4.6 gives an idea of what adaptive mesh refinement means: the operators
and some (not necessarily all) variables have to be defined on the fine level on dif-
ferent subsets of the mesh. The matter cannot be reduced to a simple statement like
“a primitive is refined to a certain level.” In fact, it will turn out that the primitive
classes (listed in Fig. 2.15) do not need any level information about themselves, at
all.

The main concept of HHG’s AMR implementation is that the individual prim-
itives do not know “their” refinement levels, but, instead, the mesh has a registry
with pointers to the primitives in its sub-meshes on each level. This registry, which
is called primitive store in HHG (the name of the corresponding class is hhgPrim-
itiveStore), has already been presented in Section 2.4.4 (see Fig. 2.14). The only
extension to the implementation described there is the introduction of new primi-
tive groups:

• RefinementBoundary: primitives on the refinement boundary of a certain
level (denoted by Rl in Section 4.3).

• InternalRefinementBoundary: primitives in the working set (i. e., they are
also in the WorkingSet group) and next to the refinement boundary (denoted
by R I

l in Section 4.3).

• ExternalRefinementBoundary: primitives not in the working set but next to
the refinement boundary (denoted by RE

l in Section 4.3).

The first step in adaptive mesh refinement is to determine for each primitive the
level on which the solution has to be computed. This is done—either statically in

102

www.manaraa.com

4.4. AN EFFICIENT ADAPTIVE REFINEMENT ALGORITHM

the beginning or dynamically after a multigrid cycle—by the error estimator. There-
fore, the hhgPrimitive class provides the method triggerRefn (int varIdx,
int lvl) (“trigger refinement”), which notifies the primitive that the variable with
ID varIdx has to be refined to level lvl. Since the error estimator’s statement is
that the solution has to be computed on a certain level, it will use the ID of the un-
knowns vector as varIdx. Note that triggerRefn only marks the primitive for re-
finement, but it neither evokes any action by the primitive, nor is the information
used by the primitive in any way. It may even happen, due to other constraints, that
the unknowns vector on this primitive will be refined to a higher level than the one
triggered. Thus, this concept does not contradict the above statement that the prim-
itives do not know their refinement levels. The information provided with trigger-
Refn is only stored with the primitive, but used by the adaptive refinement algo-
rithm.

The adaptive refinement algorithm is implemented in the refine method of the
hhgAdaptiveRefiner class. The algorithm’s two tasks are

• inserting the primitives into the appropriate groups of the primitive store, us-
ing the refinement information given to triggerRefn,

• maintaining refinement consistency among neighboring primitives.

While inserting the primitives into hhgPrimitiveStore is achieved simply by call-
ing the store’s addPrimitive method (see Fig. 2.14), the complicated task is main-
taining consistency among the primitives—especially when the mesh is distributed
over several processes.

Refinement consistency among primitives

The algorithms in Section 4.3 are based on certain properties of the mesh, which
have been defined in Definition 2. In order to implement these algorithms in HHG,
we have to ensure that the HHG mesh complies to these properties. Additionally,
after the theoretical part, for the sake of simplicity, assumed the boundary values
to be available “where needed”, it now becomes necessary now to precisely identify
at which boundary points Dirichlet or Neumann boundary conditions have to be
computed. An HHG mesh that fulfills these properties will be called consistent.

The following concise set of rules will be used to construct consistent meshes in
HHG. Some of the rules go beyond the requirements of Definition 2. They have been
added, because they make the implementation much simpler by eliminating many
special cases that would otherwise have to be considered. The rules are formulated
such that they can be understood intuitively, but they are not precise enough for
directly deriving a refinement algorithm from them. A more formal representation
of the rules will follow in Definition 3. The term “a primitive is refined to a certain
level” in the rules means that the solution is computed on the primitive at that level.

1. If the solution is computed at a certain level on an interior primitive, then it is
also computed at all coarser levels on that primitive. The same applies to the
computation of boundary conditions on boundary primitives.

2. Every mesh boundary primitive is refined to the maximum refinement or re-
finement boundary level of all neighboring interior primitives.

3. Every interior primitive is refined to the maximum common refinement level
of all neighboring higher-dimensional primitives.

103

www.manaraa.com

CHAPTER 4. ADAPTIVE MESH REFINEMENT

4. If two neighboring interior primitives are refined to different levels, the one
with the lower refinement level (which is also the lower-dimensional one) is
part of the refinement boundary on the higher level.

5. At a refinement boundary the degree of refinement jumps by exactly one level.

6. If two neighboring interior primitives are refined to different levels, the one
with the higher refinement level is on the internal refinement boundary.

7. If an interior primitive has the same refinement level as an adjacent primitive
on the refinement boundary, but is not on the refinement boundary itself, it is
on the external refinement boundary.

Rule 1 states that no refinement levels are skipped. It is one of the rules that are
not strictly necessary to establish the mesh properties claimed in Section 4.3. Its
purpose is to simplify the mesh refinement process and the implementation of the
algorithms.

Rule 2 ensures that the boundary primitives are sufficiently refined. If an inte-
rior primitive is refined to level l , it requires the adjacent boundary primitives to
be refined to level l , too, namely in the smoothing and residual calculation steps of
the multigrid algorithms. Interior primitives that are on the refinement boundary of
level l also need data on level l from their adjacent boundary primitives during the
residual calculation.

Note that the formulation “all neighboring interior primitives” can be restricted
to “all higher-dimensional neighboring interior primitives”, because boundary prim-
itives do not have lower-dimensional neighbors in the interior of the mesh. Consid-
erations like this one will be used later on to improve the efficiency of the refinement
algorithm’s implementation.

Rule 3 defines the location of the refinement boundary. It states that, for exam-
ple, a face between two elements that are refined to level l and l − 1, respectively,
will be refined to level l −1. In other words, primitives on the refinement boundary
between Cl and Cl−1 are in Cl−1, but not in Cl .

Implicitly, the rule also makes an important statement about the primitives in-
side a refined area: if all higher-dimensional neighbors of a primitive are refined
to level l , the primitive itself will also be refined to l . This means that there are
no infinitesimally small “holes” in a refined area, for example, a plane refined to
l −1 within a volume refined to l . That makes sense both in theory and in practice.
Mathematically, a small error in an infinitesimally small region within a region with
large error is likely an artifact, and it is not a sufficient reason for treating that re-
gion on a coarser resolution. In the implementation, the low refinement of a plane
within a volume of high refinement would not save a significant amount of floating
point operations—quite the contrary: it would unnecessarily increase the number
of primitives that need expensive special treatment.

We read the rule as a logical equivalence (“if and only if”). Therefore, it has an-
other implication: the refinement of higher-dimensional primitives also depends on
their lower-dimensional neighbors’ refinement. Assume, for example, that a high er-
ror is measured at a point on a face, inducing an increase in refinement from level
l −1 to level l on that face. Then, since the face is, according to the rule, refined to
the “maximum common level of all higher-dimensional neighbors”, all the elements
around the face will have to be refined to level l , too, in order to make the mesh con-
sistent. More concisely: refinement of a primitive always induces refinement of its
higher-dimensional neighbors.

104

www.manaraa.com

4.4. AN EFFICIENT ADAPTIVE REFINEMENT ALGORITHM

Rule 4 identifies the primitives on the refinement boundary, i. e., on Rl . In com-
pliance with Section 4.3, primitives on Rl are those neighbors of primitives in Cl

that are not in Cl , themselves. As explained in the discussion of rule 3, they also
have a lower dimension than their neighbors in Cl .

Rule 5 forbids differences in refinement of more than one level between neigh-
boring primitives. This property is not enforced by the adaptive refinement theory.
However, in order to treat the refinement boundaries efficiently, every jump size
would have to be implemented explicitly as a special case, and error-prone man-
ual calculations of the involved prolongation and restriction functions would have
to be done. Therefore, we restrict the jump size to one.

Rule 6 defines the location of the internal refinement boundary. Note that, in
contrast to the refinement boundary, the internal refinement boundary does not
protrude into the mesh boundary.

Rule 7 defines the location of the external refinement boundary. It relies on the
refinement boundary primitives already being identified, i. e., rules 4 and 5 being
fulfilled. Like the internal refinement boundary, the external refinement boundary
does not protrude into the mesh boundary.

To establish a consistent HHG mesh, primitives have to be added to groups in the
primitive store. To keep the above rules readable, the HHG primitive groups were
not explicitly be mentioned, there. The formulations used in the rules have to be
interpreted in the following way.

• An interior primitive is a primitive with the flag InteriorPrimitive set. A
primitive on the mesh boundary has the flag BoundaryPrimitive set.

• An interior primitive refined to level l is in WorkingSet of level l , but not in
WorkingSet of any level l∗ > l . A primitive having the refinement level l means
the same. A mesh boundary primitive refined to level l is in DirichletBound-
ary or NeumannBoundary of level l , depending on its boundary condition
type, but not in DirichletBoundary or NeumannBoundary of any level l∗ > l .

• A primitive on the refinement boundary of level l is in RefinementBoundary
of level l .

• A primitive on the internal or external refinement boundary of level l is in In-
ternalRefinementBoundary or ExternalRefinementBoundary of level l ,
respectively.

Since the rules are too informal to serve as a basis for creating a correct mesh
refinement algorithm, we formalize them in the following definition.

Definition 3 (Consistent refinement of HHG meshes). Let p denote a mesh primi-
tive. Let N(p) denote the “neighborhood” of p, i. e., the set of all primitives adjacent to
p. Let N−(p) and N+(p) denote the subsets of N(p) that contain only primitives with
a lower or, respectively, higher dimension than p.

A refinement of a mesh is consistent, if the following criteria are fulfilled for all
levels l > 0.

1. (a) ∀ p ∈C = ⋃
l≥0

Cl : p ∈Cl ⇒ p ∈Cl−1

(b) The same applies to Γ, ΓD , and ΓN .

2. (a) ∀ p ∈ Γ : N(p)∩ (Cl ∪Rl) 6= ; ⇒ p ∈ Γl

105

www.manaraa.com

CHAPTER 4. ADAPTIVE MESH REFINEMENT

(b) The same applies to ΓD and ΓN .

3. (a) ∀ p ∈C : p ∈Cl ⇒ ∀ q ∈ N+(p) : q ∈Cl

(b) ∀ p ∈C : p ∉Cl ⇒ ∃ q ∈ N+(p) : q ∉Cl

4. ∀ p ∈C : N+(p)∩Cl 6= ; ∧ p ∉Cl ⇒ p ∈Rl

5. ∀ p ∈R = ⋃
l≥0

Rl : p ∉Cl ⇒ ∀ q ∈ N(p) : q ∉Cl+1

6. ∀ p ∈C : N−(p)∩Rl 6= ; ∧ p ∉Rl ⇒ p ∈R I
l

7. ∀ p ∈C : N(p)∩Rl 6= ; ∧ p ∉ (Cl ∪Rl) ⇒ p ∈RE
l

Definition 3 gives the properties of a consistent adaptive mesh refinement, but
it does not provide a construction scheme for a refinement algorithm. An imple-
mentation of adaptive refinement must translate the above criteria into algorith-
mic statements. It would be possible to construct a refinement algorithm from the
properties in the definition in a straightforward—although not trivial—way by using
loops to implement the “∀” quantifiers and conditional branches to implement the
“∃” quantifiers and “⇒” inferences. Such a straightforward implementation would
be neither computationally efficient nor easy to understand or even verify. There-
fore, the defined criteria will be transferred into a set of formal rules that represent
the criteria exactly but provide a more suitable foundation for a refinement algo-
rithm.

Rules for the refinement algorithm

One central property of the refinement algorithm is already clear with Definition 3:
just like the numerical algorithms described in Section 2.4.4, it will have to iterate
over groups of mesh primitives. Therefore, the same problems concerning local and
remote data dependencies between primitives arise: if a primitive changes its refine-
ment level, how are the neighboring primitives—which may even belong to a differ-
ent process—notified about that change? The established mechanisms for handling
these data dependencies can be re-used. Like in the numerical algorithms, updates
between different processes have to be grouped in order to use the communication
infrastructure efficiently.

In order to re-use the communication infrastructure that is already available in
HHG, we choose the same algorithmic structure for the refinement algorithm as for
the numerical algorithms. This structure (explained in detail in [10], Section 8.11)
has two central concepts.

• Before and after an operation is performed on a primitive, the local data de-
pendencies are updated.

• The operations and local updates are performed for all primitives with the
same dimension. Then, the remote dependencies are updated for all process
boundary primitives of that dimension. This pattern is repeated for all primi-
tive dimensions.

By convention, higher-dimensional primitives are responsible for updating data de-
pendencies with their lower-dimensional neighbors. Algorithm 14 implements this
structure in its very basic form for adaptive mesh refinement. It takes the following
arguments:

106

www.manaraa.com

4.4. AN EFFICIENT ADAPTIVE REFINEMENT ALGORITHM

D The mesh dimension, i. e., the dimension of the highest-dimensional primi-
tives.

G A group of primitives. G |d indicates the group’s primitives with dimension d .

Algorithm 14: Basic structure used for modifying and propagating refine-
ment information.

14.1 Algorithm Basic refinement sweep(D, G)
14.2 Select primitive group G .
14.3 for d = 0. . .D do
14.4 foreach p ∈G |d do
14.5 Gather refinement information from all q ∈ N−(p).
14.6 Modify refinement of p, depending on neighborhood refinement.
14.7 Copy modified refinement information to all q ∈ N−(p).
14.8 end
14.9 Update remote dependencies between process boundary primitives

with dimension d and their higher-dimensional neighbors
14.10 end
14.11 Update remote dependencies between process boundary primitives with

dimension 1. . .D and their lower-dimensional neighbors

Several characteristics of the rules in Definition 3 conflict with their efficient im-
plementation in the style of Algorithm 14. There are four categories of problems.

• The primitive groups that have to be iterated over are too large for maintaining
an optimal complexity of the refinement algorithm.

• Splitting iterations over groups by primitive dimension is not possible.

• Rules modify primitives that could belong to a different process.

• Some inferences are redundant.

The following paragraphs show how to transform the rules in Definition 3 in order to
resolve these problems. The transformed rules, which will then be used to construct
an efficient refinement algorithm, are summarized in Lemma 1.

An iteration over all primitives in a group (e. g., “∀ p ∈C ”), as it occurs in several
rules, can be considered inefficient in general, but in some cases it even leads to the
full multigrid solver dropping out of the class of optimal algorithms, which would
completely annihilate the advantage of adaptive refinement. One prerequisite for
the optimal complexity of full multigrid is that the number of mesh points on a re-
finement level is an exponential function of the level, since the amount of numerical
work is proportional to that number [39]. If the mesh refinement algorithm needed
to iterate over all primitives, independent of their refinement levels, the amount of
work performed in refinement would not be bound to the decreasing number of
mesh points on the finer levels, but would grow faster than the amount of numeri-
cal work. To avoid this, the iterations over all primitives in a group are replaced by
iterations over subsets of the groups that contain only primitives on specific levels.
For example, “∀ p ∈C ” in rule 1a of Definition 3 is replaced with “∀ p ∈Cl ” in rule 1
of Lemma 1. Additional logic in the refinement algorithm has to identify the levels l

107

www.manaraa.com

CHAPTER 4. ADAPTIVE MESH REFINEMENT

on which the rule may not be fulfilled and, thus, over which groups Cl the algorithm
has to iterate.

Iterating over all the neighbors of a primitive (“∀ q ∈ N(p)”, in rule 5) prevents
the grouping of primitives by dimension, which is necessary for an efficient im-
plementation. Even though the rule may be fulfilled for primitive p with dimen-
sion d at the point of iterating over it, at a later point in the iteration some neigh-
bor q ∈ N(p) with a dimension d∗ > d may change its status, leading to the rule
being violated for p, again. Thus, the entire iteration would have to be repeated.
The same problem exists for statements that check for the existence of primitives in
groups (“N(p)∩G 6= ;”). The solution is to transform or to split rules such that in-
stead of all neighbors only lower- or higher-dimensional neighbors (N−(p) or N+(p))
are referred to. Then, the refinement algorithm can iterate over the primitives in
dimension-ascending or -descending order, and the rules refer only to primitives
that have already been passed in the iteration.

Due to parallel computing constraints, it may be impossible in practice for the
process owning a primitive p to affect all neighboring primitives’ refinement sta-
tuses (“∀ q ∈ N+(p) : q ∈ . . .”), like, e. g., in rule 3. In parallel computing, a neighbor
q may belong to a different process, and only that process can add it to its local
primitive sets. Therefore, the affected rules have to be re-written such that only the
refinement status of the primitive currently iterated over is modified, but not the
refinement status of its neighbors.

Since the rules usually require iterating over all the neighbors of a—possibly
large—set of primitives, they cause a lot of computational work that can not even
be reduced by the usual software optimization techniques. Therefore, it is impor-
tant to eliminate duplicate or redundant inferences, not necessarily for obtaining a
correct algorithm, but necessarily for making it fast. In rule 2, for example, ΓD

l and

ΓN
l are set according to the same inference as Γl . Instead of computing the same in-

ference three times for each primitive, it is sufficient to compute rule 2a and replace
rule 2b with

∀ p ∈ ΓD : p ∈ Γl ⇒ p ∈ ΓD
l and

∀ p ∈ ΓN : p ∈ Γl ⇒ p ∈ ΓN
l .

A set of rules that respects these constraints is provided in Lemma 1. Since there
is no compulsory scheme on how to transform the rules in Definition 3, it is not the
only feasible rule set that one could construct. However, this one fits into the HHG
framework especially well.

Lemma 1. The notation of Definition 3 applies. The term G |d denotes all primitives
with dimension d in group G .

A mesh refinement is consistent according to Definition 3, if the following rules are
fulfilled on all levels l in the mesh.

1. ∀ p ∈Cl : p ∈Cl−1

2. (a) ∀ p ∈ Γl : N+(p)∩ (Cl+1 ∪Rl+1) 6= ; ⇒ p ∈ Γl+1

(b) ∀ p ∈ Γl : p ∈ ΓD ⇒ p ∈ ΓD
l

The same applies to ΓN .

3. (a) ∀ p ∈Cl |d>0 : N−(p)∩Cl+1 6= ; ⇒ p ∈Cl+1

108

www.manaraa.com

4.4. AN EFFICIENT ADAPTIVE REFINEMENT ALGORITHM

(b) ∀ p ∈Cl |d<D :
(∀ q ∈ N+(p) : q ∈Cl+1

) ⇒ p ∈Cl+1

4. (a) ∀ p ∈Cl |d<D \Cl+1 : N+(p)∩Cl+1 6= ; ⇒ p ∈Rl+1

(b) ∀ p ∈Cl |d<D−1 : N+(p) ∩Rl+1 6= ; ⇒ p ∈Rl+1

5. ∀ p ∈Cl |d<D : N+(p)∩Cl+2 6= ; ⇒ p ∈Cl+1

6. ∀ p ∈Cl |d>0 \R : N−(p)∩Rl 6= ; ⇒ p ∈R I
l

7. ∀ p ∈Cl |d>0 \R : N−(p)∩Rl+1 6= ; ⇒ p ∈RE
l+1

Some of the transformations made to obtain a rule in Lemma 1 from a rule in
Definition 3 are straightforward and intuitive. For other rules the origins are not so
clear or the transformations need justification beyond the arguments mentioned
above.

The new rules (except rule 1, which will be dealt with in the next paragraph) are
set up such that the same group is modified only on levels higher than the current
iteration levels and that other groups are modified on levels at least as high as the it-
eration level. Thus, it is sufficient to set the coarsest iteration level, let us call it Lc , to
the finest level on which no primitive groups have been modified by the refinement
algorithm.

The only exception is rule 1, which can have the effect of primitives being added
to some Cl with l < Lc . If this happens, Lc will have to be set to the coarsest level
that has been affected by rule 1, and all the rules that depend on Cl will have to be
re-applied.

In Lemma 1, an explicit match for rule 1b in Definition 3 is missing. As a contri-
bution to eliminating redundant inferences, this rule has been integrated into rule 2
of Lemma 1. Rule 2a states that boundary primitives are refined to the same level as
neighboring interior primitives. Therefore, if p ∈ Cl ⇒ p ∈ Cl−1 is valid for all inte-
rior primitives, then p ∈ Γl ⇒ p ∈ Γl−1 is valid for all boundary primitives. Rule 2b
ensures the same for the groups ΓD and ΓN .

In rule 3a the infeasible changing of neighbors’ refinement statuses has been
eliminated. With Lc available, this is easy: instead of adding the q ∈ N+(p) to Cl once
p gets added to Cl , it is equivalent to wait until q is the current iteration primitive
and add q to Cl if any of its lower-dimensional neighbors are in Cl . A necessary
precondition for this equivalence is that the q that have to be added are actually
included in the iteration. If Lc is set as described above, this condition is fulfilled.

In the transformation of rule 3b we replaced the argument “A ⇒ B” with the
converse argument “¬B ⇒¬A”. In our case,(

p ∉Cl ⇒∃ q ∈ N+(p) : q ∉Cl
)⇔ (¬(∃ q ∈ N+(p) : q ∉Cl

)⇒ p ∈Cl
)

, (4.15)

where

¬(∃ q ∈ N+(p) : q ∉Cl
)⇔∀ q ∈ N+(p) : q ∈Cl .

The scope of the refinement boundary has been expanded beyond the scope
of Definition 3. Lemma 1 contains an additional rule, 4b, which makes all lower-
dimensional neighbors of a refinement boundary primitive also refinement bound-
ary primitives. With the additional rule, every refinement boundary is ensured to be
a continuous (D −1)-dimensional surface within the computational domain. While
that property is not strictly necessary for refinement consistency, it makes the im-
plementation much easier, because it eliminates special cases that would otherwise
have to be considered.

109

www.manaraa.com

CHAPTER 4. ADAPTIVE MESH REFINEMENT

Cl |d>0, Rl+1↓

Γl

Cl+1↑, Γl , Rl+1↑

Cl |d>0, Cl+1↓

Cl |d<D , Cl+1↑

Cl |d<D , Cl+1

Cl |d<D−1, Rl+1↑

Cl |d>0, Rl ↓

Cl

Cl |d<D , Cl+2↑

RE
l+1

Cl+1|d<D

Rl+1

Rl+1

ΓD
l , ΓN

l

Γl+1

Cl+1|d>0

R I
l

Cl−1

Cl+1

3a

2a

2b

6 7

4b

4a

3b
1

5

Figure 4.7: Dependencies between refinement rules.

The refinement algorithm

The requirements for an efficient parallel implementation are fulfilled by the rules
in Lemma 1. However, the rules are interdependent. This means that the order of
applying them to the mesh cannot be chosen arbitrarily, but has to take these de-
pendencies into account. For example, rule 2a for setting up Γl+1 relies on Cl+1 and
Rl+1 being set up correctly by rules 3 and 4.

The dependencies are visualized in Fig. 4.7. The figure annotates each rule with
the primitive groups it depends on (shown in the left box of each rule) and the prim-
itive groups it modifies (shown in the right box). Not shown are dependencies on the
immutable, level-independent groups C , Γ, ΓD , and ΓN . For a compact notation, ar-
rows are used to indicate dimensions. An arrow pointing downwards (↓) means that
the rule only depends on lower-dimensional primitives of the respective group, an
arrow pointing upwards (↑) indicates higher-dimensional primitives of the respec-
tive group. The arrows between the rules indicate dependencies. An arrow pointing
from rule A to rule B means that rule B depends on modifications of primitive groups
caused by rule A. Thus, whenever rule A is applied to the mesh, rule B will have to be
applied afterwards. On the other hand, if no arrow or sequence of arrows leads from
rule A to rule B, then rule B does not have to be applied after rule A.

Some rules have circular dependencies, though.

• Rules 3a and 3b depend on each other.

• Rule 5 is tightly coupled with rule 3b.

• Rule 4b depends on itself being established for all primitives with a higher
dimension.

110

www.manaraa.com

4.4. AN EFFICIENT ADAPTIVE REFINEMENT ALGORITHM

These rules have to be applied repeatedly. Rules 3a, 3b, and 5 have to be applied
alternately until neither of the rules causes changes to any primitive groups, any
more. During this process, Lc may change, too. Rule 4b has to be applied first to
primitives of dimension D − 2 and then to primitives with decreasing dimension,
until the lowest dimension is reached.

Algorithms 15–20 implement the rules in an imperative programming style. They
are kept as simple as possible, at this point, and do not contain any parallel pro-
gramming constructs. Algorithm 15 is the central function. It takes the following ar-
guments:

D The mesh dimension, i. e., the dimension of the highest-dimensional primi-
tives.

Lt Target refinement levels for all primitives, determined by the error estimator.
Lt (p) = l means that on primitive p the solution has to be computed on level
l .

Lr Refinement boundary target levels, used internally by the refinement algo-
rithm. Lr (p) = l means that primitive p is on the refinement boundary of level
l .

C The set of primitives on which the solution has to be computed. The subset
Cl contains all primitives on which the solution has to be computed on level
l . The same applies for the following primitive sets.

Γ The mesh boundary primitives.

ΓD The Dirichlet boundary primitives.

ΓN The Neumann boundary primitives.

R The refinement boundary primitives.

R I The internal refinement boundary primitives.

RE The external refinement boundary primitives.

When the algorithm is called, the mesh (represented by the sets C , Γ, ΓD , ΓN ,
R, R I , and RE) must be refined consistently (e. g., uniformly to some level). Then,
the algorithm returns a consistent refinement with all primitives refined to the lev-
els given by Lt . It applies the above rules in the order induced by the dependencies
shown in Fig. 4.7 by calling sub-algorithms that apply one or more rules at a time.
In the beginning, all refinement boundary primitive groups at levels greater than Lc

are cleared. They will be set up from scratch in AddRefnBndry (Algorithm 18). This
rather radical approach is taken despite an increase in add operations on primitive
groups, because in practice it is in fact quicker than having to check whether a prim-
itive is already contained in a group before adding it. The loop over InteriorUp-
Sweep and InteriorDownSweep (Algorithms 16 and 17) repeats as long as any of the
two algorithm makes changes to the primitive groups (b1∨b2 = True). After that, the
algorithms for setting up the refinement boundaries (AddRefnBndry and AddSec-
ondaryRefnBndry, i. e., Algorithms 18 and 20) and for adding the mesh boundary
(AddMeshBndry, i. e., Algorithm 19) are called in the order shown in Fig. 4.7.

The first sub-algorithm, InteriorUpSweep (Algorithm 16), adds primitives to
the sets Cl according to their target refinement levels given by Lt . It only applies the

111

www.manaraa.com

CHAPTER 4. ADAPTIVE MESH REFINEMENT

Algorithm 15: The basic refinement algorithm.

15.1 Algorithm BasicRefiner(D, Lt , Lr , C , Γ, ΓN , R, R I , RE)
15.2 do
15.3 foreach l | l > Lc ∧ Cl 6= ; do
15.4 Rl =;, R I

l =;, RE
l =;

// Apply rules 1 and 3a
15.5 (b1, Lc , C , Lr) = InteriorUpSweep(D, Lc , Lt , C)

// Apply rules 1, 3b, and 5, prepare rule 4
15.6 (b2, Lc , C , Lr) = InteriorDownSweep(D, Lc , Lt , Lr , C)
15.7 while b1 ∨b2 = True

// Apply rules 4a and 4b.
15.8 R = AddRefnBndry(D, Lc , C , R)

// Apply rules 2a and 2b.
15.9

(
Γ, ΓD , ΓN

)
= AddMeshBndry(D, Lc , Γ, ΓD , ΓN)

// Apply rules 6 and 7
15.10

(
R I , RE

)
= AddSecondaryRefnBndry(D, Lc , C , R, R I , RE)

15.11 return
(
C , Γ, ΓN , R, R I , RE

)

first part of rule 3, in which the primitives’ refinement levels depend on their lower-
dimensional neighbors’ levels. For this property the algorithm is given the name “up
sweep”. It is separated from the application of rule 3b, the “down sweep”, in view
of a parallelization according to Algorithm 14. If the refinement level of a primitive
increases (Lt (p) > Lm), the algorithm ensures that rule 1 is satisfied on that prim-
itive. In this case it is also necessary to reset Lr (p), because it is unknown at this
point whether the primitive will be on a refinement boundary. If necessary, Lc is de-
creased, so all primitives that have to be modified will be included in the iteration.
In this case, InteriorUpSweep has to be re-run, which is signaled to Algorithm 15
by setting b1 = True.

InteriorDownSweep (Algorithm 17) is similar to Algorithm 16, but it iterates
over the dimensions from D−1 to 0, because rule 3b depends on higher-dimensional
neighbors. By including L+

m −1 in the calculation of Lt (p) the algorithm also ensures
that rule 5 is observed.

At this point it is already possible to prepare the setup of R (which will be final-
ized in Algorithm 18) by initializing Lr (p) according to rules 4a and 4b. Note that
even if Lr (p) is set in line 17.17, it may be reset again in a later iteration. Still, hav-
ing possibly several sets and resets of Lr (p) is more efficient than spending an entire
iteration over many primitives afterwards only for initializing Lr (p).

The remaining sub-algorithms are, thanks to the work done in the first part,
much simpler. For adding the primitives to R, AddRefnBndry (Algorithm 18) can
use the Lr already set up in the preceding sub-algorithms. AddMeshBndry (Algo-
rithm 19) sets up Γl , ΓD

l , and ΓN
l according to rule 2. Last but not least, the internal

and external refinement boundaries are set up in AddSecondaryRefnBndry (Algo-
rithm 20) according to rules 6 and 7.

112

www.manaraa.com

4.4. AN EFFICIENT ADAPTIVE REFINEMENT ALGORITHM

Algorithm 16: Refine interior primitives, up sweep: apply rules 1 and 3a.

16.1 Algorithm InteriorUpSweep(D, Lc , Lt , C)
16.2 b1 = False
16.3 for d = 0. . .D do
16.4 foreach p ∈Cl |d do
16.5 if d = 0 then
16.6 L−

m = 0

16.7 else
// Rule 3a

16.8 L−
m = max

(
l | N−(p)∩Cl 6= ;)

16.9 L−
a = max

(
l | ∀ q ∈ N−(p) : q ∈Cl

)
16.10 if L−

a < Lc then
16.11 Lc = L−

a
16.12 b1 = True

16.13 Lt (p) = max
(
L−

m , Lt (p)
)

16.14 Lm = max
(
l | p ∈Cl

)
16.15 if Lt (p) > Lm then

// Rule 1
16.16 for l = Lm +1. . .Lt (p) do
16.17 Cl =Cl ∪ {p}

16.18 Lr (p) = 0

16.19 return (b1, Lc , C , Lr)

113

www.manaraa.com

CHAPTER 4. ADAPTIVE MESH REFINEMENT

Algorithm 17: Refine interior primitives, down sweep: apply rules 1, 3b,
and 5, prepare rule 4.

17.1 Algorithm InteriorDownSweep(D, Lc , Lt , Lr , C)
17.2 b2 = False
17.3 for d = D −1. . .0 do
17.4 foreach p ∈Cl |d do

// Rules 3b and 5
17.5 L+

m = max
(
l | N+(p)∩Cl 6= ;)

17.6 L+
a = max

(
l | ∀ q ∈ N+(p) : q ∈Cl

)
17.7 Lt (p) = max

(
L+

a , L+
m −1, Lt (p)

)
17.8 Lm = max

(
l | p ∈Cl

)
17.9 if Lt (p) > Lm then

// Rule 1
17.10 for l = Lm +1. . .Lt (p) do
17.11 Cl =Cl ∪ {p}

17.12 Lr (p) = 0
17.13 b2 = True

17.14

17.15 L+
r = max

(
l | (∃ q ∈ N+(p) | Lr (q) = l

))
17.16 if L+

m > Lt (p) ∨ L+
r > 0 then

17.17 Lr (p) = max
(
L+

m , L+
r

)
17.18 if Lt (p) < Lr (p)−1 then
17.19 Lt (p) = Lr (p)−1
17.20 b2 = True

17.21 return (b2, Lc , C , Lr)

Algorithm 18: Add refinement boundary primitives, i. e., apply rules 4a
and 4b.

18.1 Algorithm AddRefnBndry(D, Lc , C , R)
18.2 for d = 0. . .D −1 do
18.3 foreach p ∈CLc |d do
18.4 if Lr (p) > Lc then
18.5 RLr (p) =RLr (p) ∪ {p}

18.6 return R

114

www.manaraa.com

4.4. AN EFFICIENT ADAPTIVE REFINEMENT ALGORITHM

Algorithm 19: Add mesh boundary primitives, i. e., apply rules 2a and 2b.

19.1 Algorithm AddMeshBndry(D, Lc , Γ, ΓD , ΓN)
19.2 for d = 0. . .D −1 do
19.3 foreach p ∈ ΓLc |d do
19.4 Lm = max

(
l | p ∈ Γl

)
19.5 L+

m = max
(
l | N+(p)∩Cl 6= ;)

19.6 Lt (p) = L+
m

19.7 if Lt (p) > Lm then
19.8 if p ∈ ΓD then Γ∗l = ΓD

l
19.9 else if p ∈ ΓN then Γ∗l = ΓN

l
19.10

19.11 for l = Lm +1. . .Lt (p) do
19.12 Γl = Γl ∪ {p}
19.13 Γ∗l = Γ∗l ∪ {p}

19.14 return
(
Γ, ΓD , ΓN

)

Algorithm 20: Add internal and external refinement boundary primitives,
i. e., apply rules 6 and 7.

20.1 Algorithm AddSecondaryRefnBndry(D, Lc , C , R, R I , RE)
20.2 for d = 1. . .D do
20.3 foreach p ∈CLc |d do
20.4 if Ø l | p ∈Rl then
20.5 if N−(p)∩RLt (p) 6= ; then
20.6 R I

Lt (p) =R I
Lt (p) ∪ {p}

20.7 if N−(p)∩RLt (p)+1 6= ; then
20.8 RE

Lt (p)+1 =RE
Lt (p)+1 ∪ {p}

20.9 return
(
R I , RE

)

115

www.manaraa.com

CHAPTER 4. ADAPTIVE MESH REFINEMENT

4.5 Implementation in HHG

The implementation of Algorithms 15–20 in HHG requires new data structures and
program code that uses them efficiently. Section 4.5.1 introduces the data structures
for storing the refinement information and shows how they are used for commu-
nicating refinement information in a parallel refinement algorithm. Section 4.5.2
introduces the data structures for storing and communicating linear algebra data
at refinement boundaries. Section 4.5.3 describes how the full multigrid implemen-
tation from Section 2.4 has to be transformed in order to use an adaptively refined
mesh. The complete source code of the implementation is printed in Appendix A for
reference.

4.5.1 The adaptive refinement algorithm

The challenges in implementing adaptive refinement in HHG efficiently are in stor-
ing the refinement information and in communicating it between processes. Since
the data dependencies in the algorithms will play an important role in the following
efficiency considerations, it is important to point them out clearly.

Note that the relation

Lt (p) = max
(
l | p ∈Cl

)
(4.16)

is ensured for every primitive p throughout all parts of the refinement algorithm
(Algorithms 15–20). Whenever a primitive for which (4.16) does not hold is encoun-
tered, the relation is enforced immediately, before the iteration continues with the
next primitive. This means that the terms in which refinement levels of neighbors
are involved can be reformulated as follows.

L−
m = max

(
l | N−(p)∩Cl 6= ;)= max

(
l | (∃q ∈ N−(p) : Lt (q) = l

))
,

L−
a = max

(
l | ∀ q ∈ N−(p) : q ∈Cl

)= min
(
l | (∃q ∈ N−(p) : Lt (q) = l

))
.

The same applies analogously to L+
m and L+

a . Note that the formula for calculating
L+

r in Algorithm 17 is already in that form, i. e., it makes use of Lr (q).
These transformations help in grasping the data dependencies of the refinement

algorithm. They show that communicating Lt and Lr between processes is sufficient
to satisfy all data dependencies of neighboring primitives.

The following actions of the refinement algorithm are performance-critical:

• determining the maximum level of a primitive in a group (max
(
l |p ∈G

)
),

• determining the refinement status of a primitive’s neighborhood (e. g., N−(p)∩
G 6= ; and ∀q ∈ N−(p) : q ∈G),

• synchronizing the refinement information Lt and Lr of neighboring primi-
tives among processes, and

• synchronizing the stop criterion c1 ∨c2 = True of the do. . . while loop in Algo-
rithm 15 among processes.

In the following, we will show how these actions are implemented in HHG.

116

www.manaraa.com

4.5. IMPLEMENTATION IN HHG

hhgVariable
int id
hhgMesh &mesh

typename T

hhgScalarVariable
T = double

hhgRefinementInfo
T = unsigned

Figure 4.8: The class hhgRefinementInfo within its context.

Refinement information data structures

Both for accessing refinement information locally and for synchronizing it with re-
mote processes, efficient data structures are necessary. In order to re-use HHG’s ex-
isting communication infrastructure, the refinement information is interpreted as a
variable on the mesh. Analogous to a variable in the linear system of equations, like
the vector of unknowns, every primitive holds a part of the global refinement infor-
mation. Instead of real numbers, which are usually stored in a floating point format,
the variable has to store refinement levels in an unsigned integer format. Another
difference is that the refinement information is not level-dependent; the primitives
have to provide memory for the refinement information only once, but not for each
multigrid level individually. For these reasons, a variable for refinement information
consumes much less memory than a regular variable.

The new type of variable is implemented in the class hhgRefinementInfo. Like
hhgScalarVariable, which was introduced in Section 2.4, it is derived from hhg-
Variable. The class diagram is shown in Fig. 4.8.

The handling of physical memory is also implemented analogous to the mem-
ory handling of the linear algebra variables. The class hhgRefnInfoMemory, which
is derived from hhgVariableMemory (see Fig. 2.16), takes care of providing mem-
ory for storing a primitive’s refinement information. In contrast to the linear alge-
bra variables, the amount of memory required does not depend on the type of the
primitive; every primitive type has the same kind of refinement information. Thus,
hhgRefnInfoMemory is used directly by all primitive types.

The refinement information must contain two types of levels. The level at which
the solution has to be computed on a primitive has been denoted with Lt (p) in the
previous section. The refinement boundary level of a primitive has been denoted
with Lr (p). Both Lt (p) and Lr (p) are accessed by neighboring primitives in the algo-
rithms and, therefore, have to be included in hhgRefinementInfo. The information
is spread over three class members, which are shown in Fig. 4.9.

• myLvl is an unsigned integer array of length 2. It contains Lt (p) and Lr (p).

• lowerNeighLvls is a vector of unsigned integer arrays of length 2. It contains
Lt (q) and Lr (q) for all lower-dimensional neighbors q of p.

• higherNeighLvls has the same structure as lowerNeighLvls and contains
Lt (q) and Lr (q) for p’s higher-dimensional neighbors.

The computational complexity of the functions for computing L−
m , L−

a , L+
m , L+

a ,
and L+

r (see Algorithms 16–19) depends on this data layout. For computing max-

117

www.manaraa.com

CHAPTER 4. ADAPTIVE MESH REFINEMENT

myLvl: Lt (p) Lr (p)

lowerNeighLvls: Lt (q) Lr (q)

Lt (q) Lr (q)

... ∀q ∈ N−(p)

higherNeighLvls: Lt (q) Lr (q)

Lt (q) Lr (q)

... ∀q ∈ N+(p)

Figure 4.9: Refinement information memory layout.

ima and minima of higher and lower neighbor refinement levels, iterating over the
corresponding vectors is necessary. These iterations could be eliminated by addi-
tionally storing the extrema of Lt and Lr for each vector. On the other hand, if the
extrema were stored, they would have to be updated upon every modification of
a vector entry. If the modification increased the maximum or decreased the mini-
mum, this would only cost a small amount of computational effort. If, however, the
modification potentially decreased the maximum or increased the minimum, the
whole vector would have to be searched for the new extremum, again. Since mod-
ification of vector entries occurs much more often than computation of the above
values, storing the extrema would probably not make the algorithms more efficient.
A performance study concerning this topic has not yet been done; it is left to future
performance optimization work.

Parallelization

The refinement algorithms have already been designed in a way that allows for re-
using the established communication strategies. Both global and nearest neighbor
communication is required at different points of the algorithms. The do. . . while
loop in Algorithm 15 requires global synchronization of the stop criterion. The global
synchronization step in Algorithm 15 is necessary, because a process cannot deter-
mine from locally available information whether the refinement process is still ac-
tive in remote parts of the computational domain. The domain owned by a certain
process may not be affected by refinement in the beginning (i. e., c1 ∧ c2 = False, lo-
cally), but in a later iteration of the do. . . while loop the refined region may spread
into the process’s domain and require the process to refine its domain. Thus, a pro-
cess must not exit the loop and proceed in the algorithm before the stop criterion
is fulfilled globally. For the global synchronization, the MPI_Allreduce function is
used with its logical or (MPI_LOR) operator. This way, all the processes repeat the
loop as long as any of the interior sweeps on any of the processes makes changes to
the mesh.

Refinement information has to be exchanged among nearest neighbors after Lt

or Lr have been modified, or—seen from the opposite perspective—before this in-
formation is accessed by the neighbors. Nearest neighbor communication of refine-
ment information is necessary at three points in the algorithm. Two of them are ob-
vious:

• in Algorithm 16 at the end of each iteration of the loop over d , because Lt (p) is
modified in line 16.13 and required by higher-dimensional primitives in lines
16.8 and 16.9, and

118

www.manaraa.com

4.5. IMPLEMENTATION IN HHG

• in Algorithm 17 at the beginning of each iteration of the loop over d , because
Lt (p) and Lr (p) are modified in lines 17.7, 17.12, 17.19, and 17.17, and the
levels of higher-dimensional primitives are required in lines 17.5, 17.6, and
17.15.

The third point is not necessary for the functionality of the refinement algorithm
itself, but it has to do with the HHG way of nearest neighbor communication. In or-
der to exchange data between processes, it is necessary that the primitives on the
process boundaries are in the primitive group hhgPgProcBndry (see Section 2.4.4).
Therefore, if refinement boundary primitives get refined (i. e., get added to some
primitive group on a level l), they also have to be added to hhgPgProcBndry on level
l . This was not included in the generic algorithms in the previous section, because it
is an HHG-specific requirement. Due to this requirement, also ghost primitives that
do not belong to the working set of a process have to be added to hhgPgProcBndry
of that process. Therefore, the third point requiring nearest neighbor communica-
tion is in Algorithm 19 at the end of each iteration of the loop over d , because Lt (p)
is modified in line 19.6, and this information is needed by neighboring processes
that have p as a ghost primitive in order to add p to hhgPgProcBndry of Lt (p).

4.5.2 Data structures for the refinement boundary

The mesh points on the internal and external refinement boundary present a new
challenge in the implementation of efficient data structures, numerical operators,
and communication schemes, because they are part of large, structured regions (e. g.,
the interior of an element), but they have to be updated separately. Up to now, all
building blocks of HHG have been designed with large structured regions in mind.
Now, it becomes necessary to process only parts of these regions.

In a mesh mesh of dimension D that is consistently refined according to Defi-
nition 3, the refinement boundaries are D − 1-dimensional hyperplanes. Since the
interior of a primitive is always refined uniformly, these hyperplanes do not cross
the interior of the D-dimensional primitives. Thus, the refinement boundary always
is always comprised of primitives with dimension 0 to D −1. In a tetrahedral mesh,
for example, the refinement boundaries always consist of vertices, edges, and faces.
Also, according to the definition, there are no “holes” in the refinement boundaries,
because all lower-dimensional neighbors of a primitive on a refinement boundary
are also on the refinement boundary. Due to these properties, the mesh points on
the internal and external refinement boundaries (R I

l and RE
l) are always located in

the interior of a primitive, directly adjacent to the primitive’s halo.
An example is shown in Fig. 4.10. It depicts the data structure of a triangle face

at refinement level 3, which has been described in detail in [10], Section 8.4.2. The
figure shows only the middle plane of the face. Each box represents the memory ar-
ray entry for one mesh point. The memory required for the plane is allocated as a
contiguous block at the address tri_[1][0] in physical memory, (i. e., the mem-
ory locations of, e. g., tri_[1][0][8] and tri_[1][1][0] are adjacent in physi-
cal memory). The gray fields in the figure show the possible locations of internal or
external refinement boundaries. They are comprised of the mesh points—or array
entries, respectively—adjacent to the triangle’s edges and vertices.

In the HHG implementation, these sets of array entries are called hyperplanes.
The triangle in the example has one-dimensional hyperplanes (next to the trian-
gle’s edges) and zero-dimensional hyperplanes (next to its vertices). In particular,

119

www.manaraa.com

CHAPTER 4. ADAPTIVE MESH REFINEMENT

tri_[1][0][0]
tri_[1][1][0]
tri_[1][2][0]
tri_[1][3][0]
tri_[1][4][0]
tri_[1][5][0]
tri_[1][6][0]
tri_[1][7][0]
tri_[1][8][0]

tri_[1][0][8]

edge_[0][0] edge_[0][8]

Figure 4.10: Hyperplanes in the triangle face data structure.

the one-dimensional hyperplanes are

• for edge 0 between tri_[1][0][0] and tri_[1][0][8]: the array entries
tri_[1][1][j] with 0 ≤ j ≤ 7,

• for edge 1 between tri_[1][0][0] and tri_[1][8][0]: the array entries
tri_[1][i][1] with 0 ≤ i ≤ 7, and

• for edge 2 between tri_[1][0][8] and tri_[1][8][0]: the array entries
tri_[1][i][j] with 0 ≤ i ≤ 7 and j = 7− i .

The zero-dimensional hyperplanes are

• for vertex 0 at tri_[1][0][0]: the array entry tri_[1][1][1],

• for vertex 1 at tri_[1][0][8]: the array entry tri_[1][1][6], and

• for vertex 2 at tri_[1][8][0]: the array entry tri_[1][6][1].

If a variable has to be refined to a certain level only at one or more hyperplanes,
the values of the variable need only be computed at the mesh points of these hy-
perplanes, but not on at the bulk of the mesh points on that level. The savings in
computational effort are large, because the number of mesh points on a hyperplane
is always at least an order of magnitude smaller than the total number of interior
mesh points of a primitive. The same applies to the amount of memory that can be
saved by only allocating storage for the required hyperplanes. Doing any more than
that would be a waste of computational resources.

Hyperplane data structures

If a primitive is supposed to store hyperplane data compactly, it cannot use the usual
data structures. However, it is not necessary to invent entirely new data structures
just for the hyperplanes. Instead, the data structures of lower-dimensional primi-
tives can be used. Clearly, a triangle’s one-dimensional hyperplane data fits perfectly
into an edge data structure. This applies to all other primitive types, too, and the data
structures for all types of hyperplanes a primitive can have are already implemented

120

www.manaraa.com

4.5. IMPLEMENTATION IN HHG

for handling the data of lower-dimensional primitives. Thus, no new code for data
structures has to be written. Only the algorithms for numerical and communication
operations have to be extended for using the data structures in the intended ways.

Numerical operations on hyperplanes

As we will see in Section 4.5.3, the operations that need to work with hyperplanes
are the prolongation, the restriction, and the residual calculation. All of these op-
erations can use their standard equations for computing variable values at the hy-
perplane mesh points. Additionally, they only need to write results of calculations to
hyperplanes; reading hyperplane values as input is not required. These properties
reduce the number of special cases that need to be implemented for different types
of hyperplanes. The operators only need to know,

• which mesh points belong to a hyperplane and, therefore, have to be iterated
over in the computation, and

• how the array indices of a primitive’s standard data structure are mapped to
the array indices in its hyperplane data structure.

Both points depend on the location of a hyperplane within a primitive.
Consider, for example, the hyperplane at edge 1 in Fig. 4.10. The mapping be-

tween the (not actually allocated) original data structure tri_ and the edge data
structure edg_ allocated for the hyperplane is

edge_[0][i] =̂ tri_[1][i][0] for 0 ≤ i ≤ 7.

The array entries indicated by i in the above equation are also the ones that have to
be iterated over by the operators.

Local and remote communication

Smooth integration into the established communication schemes requires functions
for copying data between hyperplanes and their adjacent mesh primitives. Since the
hyperplanes correspond to mesh points in a primitive’s interior, the primitive is re-
sponsible for copying the data to the adjacent lower-dimensional neighbors. Fur-
thermore, it is advantageous to make the copy process transparent for the lower-
dimensional neighbor, i. e., the neighbor does not need to know whether the data
comes from a fully refined interior or from a hyperplane.

These demands are met by a new set of local communication functions that copy
the complete content of a primitive to another primitive of the same type. As for
the traditional local communication functions (see Fig. 2.17), there is a hard-coded
implementation for every possible alignment of primitives. The functions are orga-
nized into the classes

• hhgVertexVertexCopier for copying between vertices,

• hhgVEFullEdgeCopier for copying between volume edges, and

• hhgFaceFullFaceCopier for copying between faces.

With the new operators for local communication a good basis for remote com-
munication is available. In fact, no new data structures or algorithms are necessary

121

www.manaraa.com

CHAPTER 4. ADAPTIVE MESH REFINEMENT

for communicating hyperplane data between processes. Recall that every primitive
on the process boundary has its representative ghost primitive on the process on the
other side of the boundary. In the HHG concept before the introduction of adaptive
refinement, remote communication always transmitted the complete interior data
of the primitive or complete halo layers between processes. Partial transfers of val-
ues from a primitive’s interior (i. e., of a hyperplane) did not occur. Thus, they do not
need to be considered in the adaptive refinement implementation.

4.5.3 The adaptive full multigrid algorithm

In order to get an overview over the additional functionality required for the im-
plementation of the adaptive full multigrid algorithm in HHG, we compare the al-
gorithm in pseudo-code (Algorithms 13 and 12) with its original form (Algorithm 7
using the FAS-cycle defined in Algorithm 8 instead of the V-cycle). From the dif-
ferences we deduce how the existing functions have to be changed and which new
functions have to be implemented. Another important question is how much mem-
ory the adaptive full multigrid algorithm uses, compared to the non-adaptive ver-
sion. An analysis of the memory demand concludes this section.

Additional variables

In order to be easily comprehensible, Algorithms 12 and 13 introduced several new
variables. Not all of them are necessary in the implementation, though. Some vari-
ables can be mapped to a single variable, because they do not have overlapping data
dependencies. For the memory consumption it is beneficial to keep the number of
variables as small as possible. However, a small increase in the number of variables,
compared to the full-multigrid algorithm on uniformly refined meshes, is not avoid-
able.

The original implementation of uniform refinement needs three variables on the
finest level (v , f , r) and four variables on the coarser levels (v , f , r , v∗). The HHG
implementation of the full multigrid algorithm with adaptive refinement is shown
in Algorithms 21 and 22. It needs one additional variable on the finest level (r∗) and
one additional variable on the coarser levels (f ∗).

Additional functionality

Algorithm 13 differs from Algorithm 7 in several points. A general difference is that
all numerical operations are annotated with the mesh regions in which they have to
be carried out. For their implementation, this means that all of them have to be ex-
tended such that they accept a parameter of type hhgPrimitiveGroup, so that they
only iterate over primitives in the given groups. Besides accepting this parameter,
the solve function (line 13.2) and the residual calculation on level l −1 (line 13.5)
do not need any further changes. A real extension has to be implemented for the
prolongation

vl = P̂ l
l−1vl−1 on RE

l

in line 13.6, because the target data structure is a hyperplane. The residual calcula-
tion

rl = fl − Al vl on R I
l

122

www.manaraa.com

4.5. IMPLEMENTATION IN HHG

Algorithm 21: Implementation of the adaptive full multigrid algorithm,
using the adaptive full approximation scheme (Algorithm 22).

21.1 Algorithm fullmg(A, v, f , g , R, R̂, P, P̂ , ls , l f , µ, ν1, ν2)
21.2 Initialize fls on Cls

21.3 vls = solve(Als vls = fls) on Cls

21.4 for l = ls +1. . . l f do
21.5 Initialize Cl according to refinement criteria
21.6 ul−1 = vl−1 on Cl−1 ∪Γl−1

21.7 f ∗
l−1 = fl−1 − Al−1vl−1 on Cl−1 ∩Rl

21.8 vl =
{

P̂ l
l−1vl−1 on Cl ∪Rl ∪RE

l

gl on ΓD
l

21.9 Initialize fl on Cl

21.10 r∗
l =

{
fl − Al vl on R I

l ∪Rl

0 on RE
l

21.11 for i = 1. . .µ do
21.12 FAScycle(A, vl , fl , f ∗, r∗, R, R̂, P, l , ls , ν1, ν2)
21.13 end
21.14 end
21.15 return vl

Algorithm 22: Implementation of the adaptive full approximation scheme.

22.1 Algorithm FAScycle(A, vl , fl , f ∗, r∗, R, R̂, P, l , ls , ν1, ν2)
22.2 if l = ls then
22.3 vl = solve(Al vl = fl) on Cl

22.4 else
22.5 vl = smooth(Al , vl , fl ,Cl ,ν1)
22.6 rl = fl − Al vl on Cl ∪Rl

22.7 ul−1 = R̂ l−1
l on Cl−1 ∩ (Cl ∪Rl ∪Γl)

22.8 fl−1 =
{

R l−1
l rl on Cl−1 ∩Cl

f ∗
l−1 +R l−1

l

(
rl − r∗

l

)
on Cl−1 ∩Rl

22.9 fl−1 = fl−1 + Al−1vl−1 on Cl−1 ∩ (Cl ∪Rl)
22.10 vl−1 = ul−1 onΩl−1 ∪Γl−1

22.11 vl−1 = FAScycle(A, vl−1, fl−1, f ∗, r∗, R, R̂, P, l −1, ls , ν1, ν2)
22.12 f ∗

l−1 = fl−1 − Al−1vl−1 on Cl−1 ∩Rl

22.13 vl−1 = vl−1 −ul−1 on Cl−1 ∩ (Cl ∪Rl)

22.14 vl =
{

vl = P l
l−1vl−1 on Cl ∪Rl

P l
l−1 (vl−1 −ul−1) on RE

l

22.15 ul−1 = vl−1 onΩl−1

22.16 r∗
l = fl − Al vl on R I

l ∪Rl

22.17 vl = smooth(Al , vl , fl ,Cl ,ν2)
22.18 end
22.19 return vl

123

www.manaraa.com

CHAPTER 4. ADAPTIVE MESH REFINEMENT

and the initialization

rl = 0 on RE
l

in line 13.7 are also actions on hyperplanes, which have not been implemented, so
far.

Even more differences can be found in the full approximation scheme (Algo-
rithm 12 vs. Algorithm 8). The first one is spotted in the pre-smoothing step, where
vl is not smoothed, but only copied to v l on Rl and RE

l (line 12.5). When Gauss-
Seidel is used as a smoother, this operation can be omitted, because the smoother
works in-place, i. e., vl and v l are identical. For the Jacobi smoother, vl and v l are
stored in different memory arrays. Thus, the values have to be copied. This is not
tough to implement, but it is mentioned here for completeness.

The calculation r l = 0 on RE
l (line 12.6) already occurred in Algorithm 13. A new

change is the calculation of the defect

dl−1 = rl−1 +R l−1
l

(
r l − rl

)
on Cl ∩Rl

in line 12.7, which will need a special implementation.
In the initialization of v∗

l−1 outside the refined area,

v∗
l−1 = ul−1 on Cl−1 ∩C l

in line 12.8, is again a simple copy operation.
The right-hand side calculation

fl−1 = R l−1
l fl on Cl−1 ∩

(
C l \Rl

)
in line 12.9 was already a topic of discussion in Section 4.3.1. The conclusion there
was that this calculation can usually avoided by initializing fl−1 with the model’s
right-hand side. In HHG it is implemented this way; therefore, there is no need to
implement additional functionality, at this point.

The calculation

ẽl = P l
l−1

(
vl−1 − v∗

l−1

)
on RE

l

in line 12.13 cannot be avoided and the equation has not been encountered, yet.
Thus, it has to be implemented.

The addition ṽl = v l +ẽl does not have to be considered, because ẽl is not explic-
itly computed in Algorithm 22. The subsequent residual computation on the interior
refinement boundary has already occurred in Algorithm 13. For post-smoothing the
same statements as for pre-smoothing apply.

Memory demand

As stated above, the adaptive full multigrid algorithm needs one variable more than
the algorithm for uniform meshes. However, the variables do not have to be allo-
cated on the entire mesh. The additional variable on the finest level, r∗, is needed
on R I

l ∪Rl ∪RE
l . The additional variable on the coarser levels, f ∗, is needed on

Cl−1 ∩Rl . Thus, both variables are only needed on hyperplanes of the mesh.
For estimating the memory demand of the additional variables, we assume that

the memory demand of a variable depends linearly on the number of mesh points

124

www.manaraa.com

4.5. IMPLEMENTATION IN HHG

on which it is defined. For estimating the number of mesh points, we can assume
a regular grid in D dimensions, because the HHG meshes on the higher levels are
regular to a large extent. The number of points in a regular gridΩl on level l is

N (Ωl) ≈ 2Dl .

The number of points in a hyperplaneΩ∗
l , which is a mesh of dimension D −1, is

N (Ω∗
l) ≈ 2(D−1)l .

Thus, a variable that is only defined on a hyperplane needs 2l times less memory
than a variable that is defined on the complete mesh:

N (Ω∗
l)

N (Ωl)
≈ 2−l .

Now the additional memory demand on the finest level can be calculated. Since r∗
is defined on three hyperplanes, its memory demand is 3 ·2−l the demand of a fully
allocated variable. Since there are three other variables defined on the mesh, a fourth
fully allocated variable would increase the total memory demand by 1/3. Thus, the
need for r∗

l increases the total memory demand by a factor of 1/3 ·3 ·2−l = 2−l . The
additional memory demand for f ∗

l−1 can be calculated in a similar way. However,

since the number of mesh points scales with a factor of 2D between the levels, it is
small compared to the demand for r∗

l and will, for simplicity, be neglected in the
following.

The question that is relevant in practice is: when does adaptive mesh refine-
ment pay off, in terms of memory demand? Adaptive refinement uses less mem-
ory than uniform refinement as soon as the savings due to a reduced set Cl exceed
the expenses caused by the variable r∗. The variables v , f , and r are defined on
Cl ∪Rl ∪RE

l . Thus, the memory demand for these variables is

N (v, f ,r) = 3N (Cl)+3
(
N (Rl)+N (RE

l)
)

≈ 3N (Cl)+6N (Rl) ,

assuming that N (Rl) ≈ N (RE
l). Including r∗, the total memory demand for adaptive

refinement is

N (v, f ,r)adaptive = 3N (Cl)+9N (Rl)

≈ 3
(
2Dl +3 ·2(D−1)l

)
.

For uniform refinement, Rl and RE
l are empty and Cl =Ωl . Thus,

N (v, f ,r)uniform = 3N (Ωl)

≈ 3 ·2Dl .

Thus, N (v, f ,r)adaptive < N (v, f ,r)uniform, if

ρ2Dl +3 ·2(D−1)l < 2Dl

⇔ ρ < 1−3 ·2−l ,

where ρ is the fraction ofΩl that is covered by Cl .
Note that ρ depends only on l , but not on D . For typical values of l , the limits

are:

125

www.manaraa.com

CHAPTER 4. ADAPTIVE MESH REFINEMENT

• for l = 1: ρ <−0.50,

• for l = 2: ρ < 0.25,

• for l = 5: ρ < 0.90,

• for l = 9: ρ < 0.99.

This means, for only one level of refinement, adaptive refinement never pays off.
However, for two or more levels of refinement, it quickly starts paying off; e. g., for
five levels it pays off even if Cl covers almost 90% of the domain.

4.6 Numerical results

Now that the theory is complete, some examples that show the quality of the approx-
imation produced by the adaptive refinement algorithm shall be presented. Polyno-
mials of different degrees and trigonometric functions are used as boundary con-
ditions. Since the underlying finite element method is not exact for polynomials of
higher degrees and non-polynomial functions, it would not be useful to compare the
approximation with the exact solution. Therefore, in order to determine its quality,
the approximation is put into relation with the approximation obtained by uniform
refinement.

4.6.1 Model problems and geometries

The unit cube is used as computational domain for all numerical experiments. Since
HHG currently knows only tetrahedral elements, the cube is split into tetrahedra. At
least six tetrahedra are needed to build up a cube. The splitting of a cube into six
tetrahedra was already shown in Chapter 3 (see Fig. 3.3). Since the adaptive refine-
ment algorithm does not allow for varying the refinement level within coarse-grid
elements, but only between them, a mesh with only six coarse-grid elements is not
very flexible in terms of adaptive refinement. Therefore, the unit cube is split into 8
sub-cubes, which are then split into six tetrahedra, each. The resulting mesh with 48
elements is sufficient for testing adaptive refinement. At the same time, it is regular
enough for the refinement to be defined manually. This is important, because an
automatic, dynamic mesh refiner is not yet available for HHG.

The boundary conditions in all experiments are chosen such that the dominat-
ing term of the solution increases along the diagonal from x = (0,0,0)T to x = (1,1,1)T ,
which is shown in Fig. 4.11. If that term dominates strongly, the solution “concen-
trates” in the corner at x = (1,1,1)T . Together with proper tuning of the solution’s
curvature, this setup induces the demand for adaptively refining the sub-cube at
x = (1,1,1)T .

Another advantage of this setup is that the numerical values (solution, error, etc.)
along the diagonal of the unit cube are representative for the values in the entire
domain. Therefore, the diagrams for showing the numerical results in the follow-
ing sections plot the values along the diagonal of the unit cube. For these plots, we
define the auxiliary one-dimensional coordinate system (x ′). The coordinate axis is
aligned with the diagonal of the unit cube. The system’s offset and scaling relative to
the original system are chosen such that

• x = (0,0,0)T is mapped to x ′ = 0, and

126

www.manaraa.com

4.6. NUMERICAL RESULTS

x = (0,0,0)T

x ′ = 0

x = (1,1,1)T

x ′ = 1

Figure 4.11: Computational domain used for numerical experiments.

• x = (1,1,1)T is mapped to x ′ = 1.

The auxiliary coordinate system is also indicated in Fig. 4.11.

In the following, we will analyze three model problems.

Problem 1. A linear polynomial:

u = 1

3
(x + y + z) ,

f = 0.

The solution increases linearly with x ′. It is scaled such that u(x ′) = 1 for x ′ = 1.
Since u is a polynomial of first order, a correctly implemented a linear finite element
method must solve this problem exactly, also on an adaptively refined mesh.

Problem 2. A quadratic polynomial:

u = 1

3
(x + y + z)2 − 1

2
(x − y)2 ,

f = 0.

The function u is obtained by rotating and scaling the function x2 − y2 such that
the x-axis is mapped onto the diagonal of the unit cube and the point (1,0,0)T is
mapped onto (1,1,1)T .

The solution increases quadratically with x ′. Note, though, that (x + y + z)2 is
not the dominant term; the function is also quadratic along the (x − y) axis. The
linear finite element method does not necessarily solve this problem exactly, any
more. Therefore, it is a good tool for studying subtle differences between uniform
and adaptive refinement.

127

www.manaraa.com

CHAPTER 4. ADAPTIVE MESH REFINEMENT

Problem 3. A transcendental function:

u = s · sinh

(
2p
6

kπ(x + y + z)

)
cos

(
1p
2

kπ(y −x)

)
cos

(
1p
6

kπ(2z −x − y)

)
,

where s =
(
sinh(

p
3)
p

2kπ
)−1

,

f = 0.

The function u is obtained by transforming the function sinh(πx)cos(πy)cos(πz) in
the way described in Problem 2.

For this function, u(x ′) = sinh(x ′); in the orthogonal directions (x − y) and (z −
x − y) the sinh is “distorted” by cos waves. In contrast to the previous functions, the
gradient of this function is strong and directed primarily along the diagonal of the
unit cube, making the function a natural candidate for adaptive refinement. The
parameter k modifies the “steepness” of u along x ′; a higher value of k causes the
solution to concentrate more at x ′ = 1. The scaling parameter s ensures that u = 1 at
x ′ = 1 for any choice of k.

4.6.2 Expected results

In general, the solution of a BVP is not computed exactly by the linear finite element
method, even on regular grids. Examples are Problems 2 and 3 above. Unfortunately,
it is, in general, not possible to precisely state the expected error of the computed
approximation. Generally only the order of the error can be given—for HHG’s finite
element discretization, the error is in O(2−2l). Exact error bounds can only be de-
rived for regular grids. Therefore, we will formulate properties that we can expect
the numerical results to fulfill, even though strict error bounds are not available for
the HHG meshes.

The linear polynomial is solved exactly

Both the quadrature rules (cf. Section 2.2.2) and the basis functions (cf. Section 2.2.6)
used in HHG approximate linear polynomials exactly. The quadrature rules approx-
imate even polynomials up to second degree exactly, by the way. Therefore, HHG
must solve Problem 1 exactly. The adaptive refinement method does not introduce
any additional errors in this case, so the problem must also be solved exactly on an
adaptively refined mesh.

The exact solution is invariant

If a multigrid cycle is initialized with the exact solution (e. g., vl = ul in Algorithm 6),
this initial approximation must not be changed. This must also hold for adaptively
refined meshes. Note that the full multigrid algorithm does generally not have this
property, because the interpolation of the solution to the next higher level is not
exact.

Adaptive refinement is not worse than uniform refinement on a lower level

Adaptively refining a mesh in HHG means starting with a mesh that is refined uni-
formly or adaptively to level l and refining some elements from level l to level l +1.
This means that all nodes of the original mesh are also contained in the refined

128

www.manaraa.com

4.6. NUMERICAL RESULTS

mesh. In the numerical experiments, we will examine the particular case that all
elements in the adaptively refined mesh are refined to either level l or l +1. When
solving the problem on the adaptively refined mesh, we expect that—although the
computations at the refinement boundaries may be affected by inaccuracies, see
Section 4.3—the error on all nodes is equal to or lower than the error obtained by
solving on a mesh refined uniformly to level l .

4.6.3 Observed results

The analysis of the actual HHG results starts with the polynomial problem and works
its way up over the slightly harder quadratic problem to the hardest one, the non-
polynomial problem. The following solver configuration was used in all computa-
tions:

• Multigrid algorithm: full multigrid with FAS-cycles.

• Smoother: red-black Gauss-Seidel.

• Number of pre-/post-smoothing steps: ν1 = ν2 = 2.

• Restriction operator: full weighting.

• Prolongation operator: linear interpolation.

• Coarse-grid solver: red-black Gauss-Seidel.

• Start level for full multigrid and coarsest level for FAS-cycles: ls = 2.

• Initial approximation on start level: v2 = 0.

• Mesh hierarchy for adaptive refinement: uniform refinement up to l f −1.

• Number of FAS-cycles on each level: µ= 20.

The high number of FAS-cycles per level ensures that the problems are always solved
to discretization accuracy. Thus, the errors that are shown in the following graphs are
the discretization errors of the numerical schemes.

Fig. 4.12 shows the solution and the errors along x ′ for solving Problem 1 on
l f = 4. The error curves are plotted using a logarithmic y axis. Therefore, the Dirich-
let boundary points at x ′ = 0 and x ′ = 1 (where the error is 0) are excluded. With uni-
form refinement, the number of interior mesh points along x ′ on level l f is 2l f +1−1,
i. e., 31 for l f = 4. For x ′ ∈ [0,0.5] the error graph for adaptive refinement is defined
on every other point only, because there the mesh is refined to one level less—see
Fig. 4.11.

Both uniform and adaptive refinement solve the problem exactly; for both al-
gorithms the error maxima are in the order of 10−14. Slight differences in the er-
ror curves can be observed, but they are not surprising. The two algorithms per-
form quite different computations, which are both numerically correct, but, due
to round-off errors, have slightly different results when implemented with floating-
point numbers. These round-off errors show up most prominently, if the numerical
errors are small, as in the example at hand.

Fig. 4.13 shows solution and errors for Problem 2, again for l f = 4. As stated in
the presentation of the problems, we cannot assume that HHG solves this problem

129

www.manaraa.com

CHAPTER 4. ADAPTIVE MESH REFINEMENT

0

0.2

0.4

0.6

0.8

1

0 0.25 0.5 0.75 1
10−17

10−16

10−15

10−14

10−13

10−12

So
lu

ti
o

n

E
rr

o
r

x ′

Solution
Error (unif. ref.)
Error (adapt. ref.)

Figure 4.12: Solution and errors for Problem 1 on level 4.

exactly, because it implements a linear finite element method. However, on com-
pletely regular grids even a linear method can reach quadratic accuracy. This is what
happens in this example, as the error curve for uniform refinement shows. The ap-
proximation on the uniformly refined mesh is still exact.

The mesh’s regularity can easily be destroyed by moving one of the vertices of the
coarse mesh. For comparison, a “skewed” mesh was created by moving the inner
vertex (the one that connects all eight cubes) from (0.5,0.5,0.5)T to (0.4,0.4,0.4)T .
The resulting mesh is topologically equal to the original mesh, but the refined meshes
are not completely regular, any more. The skew does not influence the finite ele-
ments’ anisotropy significantly, by the way. The error obtained when solving Prob-
lem 2 on the skewed mesh with uniform refinement is also shown in Fig. 4.13; it is in
the order of 10−4.

The regularity is also lost, if the regular mesh is refined adaptively, because then
the couplings at the refinement boundary are not symmetric, any more. That even
applies for adaptive smoothing (Algorithm 9), although that algorithm works on the
uniformly refined mesh! Not using some of the degrees of freedom on the finest
mesh is the same as not having them available in the first place. Fig. 4.13 shows
the errors for adaptive refinement and adaptive smoothing. They are in the range of
the error for the skewed mesh. The question why adaptive refinement and adaptive
smoothing are not exactly equal was not analyzed in detail.

A logarithmic plot (Fig. 4.14) of the error at x ′ = 0.5 for varying l f shows that for
adaptive refinement, adaptive smoothing, and uniform refinement of the skewed
mesh the error decreases exponentially with l f . This is the expected behavior of a
linear finite element method with a discretization accuracy of O(h2). The error for
uniform refinement of the regular mesh actually increases with l f , because, as for
Problem 2, it is dominated by round-off errors, which depend on the number of
unknowns on the finest level.

This observed result contradicts the expected result that adaptive refinement is
not worse than uniform refinement on a lower level. In this example, the regularity of

130

www.manaraa.com

4.6. NUMERICAL RESULTS

0

0.2

0.4

0.6

0.8

1

0 0.25 0.5 0.75 1
10−18

10−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

So
lu

ti
o

n

E
rr

o
r

x ′

Solution
Error (unif. ref.)
Error (adapt. ref.)
Error (adapt. smoothing)
Error (unif. ref., skewed mesh)

Figure 4.13: Solution and errors for Problem 2 on level 4.

10−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

3 4 5 6

E
rr

o
r

x ′

Error (unif. ref.)
Error (adapt. ref.)
Error (adapt. smoothing)
Error (unif. ref., skewed mesh)

Figure 4.14: Errors on different levels for for Problem 2.

131

www.manaraa.com

CHAPTER 4. ADAPTIVE MESH REFINEMENT

0

−1 ·10−14

−8 ·10−15

−6 ·10−15

−4 ·10−15

−2 ·10−15

2 ·10−15

0 0.25 0.5 0.75 1

E
rr

o
r

l

Error (unif. ref.)
Error (adapt. ref.)
Error (adapt. smoothing)

Figure 4.15: Errors for Problem 2 on level 4 when initializing the solver with the exact
solution.

the mesh, which can only be achieved with uniform refinement, boosts the accuracy
of the finite element method beyond the usual O(h2) accuracy, and the problem is
always solved exactly, even on a very coarse mesh. Although the example is rather
academic, it shows that adaptive refinement should generally be used with caution.

A test for verifying that the error is not introduced through the multigrid algo-
rithm is to initialize the FAS cycle on the finest level with the exact solution. (Then,
of course, it is not necessary—nor useful—to use full multigrid.) The full approxi-
mation scheme, like any stationary iteration, is invariant to the exact solution, and
this must also hold for FAS with adaptive refinement. Thus, when conducting this
experiment, the error must remain zero after any number of FAS cycles. Fig. 4.15
shows that this is in fact the case. 20 FAS cycles on a mesh refined up to level 4 were
performed, where the first cycle was initialized with the exact solution. For adaptive
refinement, the elements that were only refined to level 3 were initialized with the
exact solution on that level. As the figure shows, the error is in the order of 10−14 in all
cases, which is the round-off error that we already observed in some of the previous
examples.

The non-polynomial Problem 3 can not be solved exactly with a linear finite ele-
ment method, any more, even on a regular grid. And, as we will see, the steepness k
of the solution has a high influence on how well it is approximated. Fig. 4.16 depicts
the solution for two different values of k: k = 1 and k = 2.

For k = 1, Fig. 4.17 shows the errors achieved with uniform and adaptive refine-
ment on level 4 (lf = 4). For comparison, it also shows the error achieved with uni-
form refinement on level 3.

With uniform refinement the error is always positive. With adaptive refinement
(both adaptive smoothing and real adaptive refinement) the error drops strongly
into the negative at the refinement boundary. The peak is located at the layer of
nodes inside the refined area that is directly adjacent to the refinement boundary (at
R I

l , as defined in Section 4.3). As Fig. 4.18 shows, the artifact does not occur because

132

www.manaraa.com

4.6. NUMERICAL RESULTS

0

0.2

0.4

0.6

0.8

1

0 0.25 0.5 0.75 1

So
lu

ti
o

n

x ′

k = 1
k = 2

Figure 4.16: Solutions for different values of k in Problem 3.

0

−4 ·10−4

−2 ·10−4

2 ·10−4

4 ·10−4

0 0.25 0.5 0.75 1

E
rr

o
r

x ′

Error (unif. ref.)
Error (adapt. ref.)
Error (adapt. smoothing)
Level 3 error (unif. ref.)

Figure 4.17: Errors for Problem 3 with k = 1 on level 4.

133

www.manaraa.com

CHAPTER 4. ADAPTIVE MESH REFINEMENT

0

−2 ·10−4

−1 ·10−4

−5 ·10−5

5 ·10−5

1 ·10−4

2 ·10−4

0 0.25 0.5 0.75 1

E
rr

o
r

x ′

Error (unif. ref.)
Error (adapt. ref.)
Error (adapt. smoothing)
Level 4 error (unif. ref.)

Figure 4.18: Errors for Problem 3 with k = 1 on level 5.

the mesh resolution is too small. At one refinement level higher (lf = 5), the artifact
in the adaptive refinement error is present at a smaller scale, but in the same relation
as for l f = 4. In both cases the maximum of the absolute error is slightly higher than
the maximum of the uniform refinement error on the coarser level.

The root cause for this artifact is that the curvature of the solution is too high at
the refinement boundary. In consequence, when prolongating the solution from lf−
1 to lf (line 13.6 in Algorithm 13), the initial error is quite high, because in HHG only
linear interpolation is used for prolongating the solution (i. e., P̂ = P). With uniform
refinement, that is not a big problem, because the FAS cycles on lf apply smoothing
and coarse grid correction to all nodes on lf. With adaptive refinement, however,
the FAS cycles do not apply smoothing to nodes in Rl and RE

l (only coarse grid
correction).

To alleviate the problem, two options are available. First, a higher-order inter-
polation P̂ can be used. However, as explained in Section 4.3.3, that would require
a significant implementation effort in HHG. While it is an interesting topic for fu-
ture research, it is beyond the scope of this thesis. The other option is to extend
the refined area of the mesh, so that the refinement boundary is located in an area
of lower solution curvature. For our experiments, we can analogously change the
characteristics of the problem, so that the parts of the solution with high curvature
are all inside the refined are a of the given mesh. This can be achieved by changing
the problem’s steepness parameter k. As shown in Fig. 4.16, for k = 2 the solution
concentrates more at x ′ = 1, and the curvature in the unrefined area (x ′ ≤ 0.5) de-
creases. The errors for this configuration are shown in Fig. 4.19. The y-axis of the
graph is scaled such that the errors on level 4 can be observed well, at the expense of
cutting off the level 3 error curve, which has its maximum of 1.5 ·10−3 at x ′ = 0.875.
The error for adaptive smoothing is not shown, because it is so close to the error for
real adaptive refinement that it would clobber the plot. The artifact of the adaptive
refinement error dropping into the negative at the refinement boundary, which we
know from Figures 4.17 and 4.18, is still observable, but it is much less pronounced.

134

www.manaraa.com

4.6. NUMERICAL RESULTS

0

−1 ·10−4

1 ·10−4

2 ·10−4

3 ·10−4

4 ·10−4

5 ·10−4

6 ·10−4

0 0.25 0.5 0.75 1

E
rr

o
r

x ′

Error (unif. ref.)
Error (adapt. ref.)
Level 3 error (unif. ref.)

Figure 4.19: Errors for Problem 3 with k = 2 on level 4.

The error is now close to the error of uniform refinement. In particular, it is every-
where smaller than the uniform refinement error on the coarser level, which is the
expected result claimed in Section 4.6.2.

135

www.manaraa.com

CHAPTER 4. ADAPTIVE MESH REFINEMENT

136

www.manaraa.com

Chapter 5

Optimization of multigrid cycles

Contents
5.1 An error and cost model for the full multigrid algorithm 138

5.2 Branch and bound optimization . 141

5.3 Integrating model extensions into the optimization 144

5.4 Implementation . 147

5.5 Examples . 148

5.5.1 Theoretical examples . 148

5.5.2 Optimization of an HHG full multigrid run 149

5.6 Further model extensions and related work 150

This chapter is based on the article “Optimizing the number of multigrid cycles
in the full multigrid algorithm” by Alexander Thekale1 and the author of this work,
which was published in the proceedings of the 14th Copper Mountain conference
on multigrid methods, 2009 [47]. Its quite different approach to improve the effi-
ciency of multigrid algorithms provides an interesting contrast to the previous chap-
ter. While adaptive mesh refinement aims at distributing the computational work in
an optimal way by exploiting the properties of the PDE. The method presented in
this chapter looks at the structure of the multigrid algorithm. Since the method does
not consider what is solved, but how it is solved, it is even applicable to multilevel
methods that are not concerned with the solution of PDEs.

The method minimizes the execution time of full multigrid by optimizing the
number of multigrid cycles performed on each level. In Algorithm 7, the parameter
µ denoted the number of γ−c ycl es performed on each level. The introduction did,
however, not specify how to choose µ. It is common practice to set µ to the same
value on all levels, although no one prevents us from using a different value on each
level. The number of cycles per level that is necessary to reach the desired accuracy
of the solution on the finest level is usually determined by trial and error. We will
show how a branch and bound (B&B) algorithm can be used to find the optimal
number of cycles per level. Characteristics of the PDE, its discretization, and the
solver are used as parameters in the optimization.

A model that describes the error reduction and the cost of full multigrid is con-
structed in Section 5.1. This model is required for a B&B optimization algorithm,

1at that time doctorate student at the Department of Mathematics, Applied Mathematics II, University
of Erlangen-Nuremberg, Germany

137

www.manaraa.com

CHAPTER 5. OPTIMIZATION OF MULTIGRID CYCLES

µ3 ·k3

µ1

µ2

K = µ1 ·k1 µ2 ·k2+ +
0

1

2

3

· · ·
· · ·

· · ·

Figure 5.1: Illustration of the full multigrid method.

which is derived in Section 5.2. In Section 5.3 some extensions that make the initial
model more applicable in practice are added. The software library cycleopt, which
implements this optimization algorithm, is introduced in Section 5.4. The chapter is
concluded with examples in Section 5.5 and an outlook to further and related work
in Section 5.6.

5.1 An error and cost model for the full multigrid algo-
rithm

The goal of this section is to set up a model for the cost and the accuracy of the
full multigrid algorithm. In order to remain easily comprehensible, the basic model
presented in this section excludes details necessary for representing real-life multi-
grid algorithms. A more complete model that can be used with HHG is described in
Section 5.3.

Definitions and assumptions

In order to set up the model, we need to make some assumptions about the solver, as
well as about the PDE to be solved, and its discretization. Fig. 5.1 shows a schematic
representation of the full multigrid algorithm. In the first step, the linear system
of equations is solved on level l = 0. The solution is propagated to level 1, where
µ1 multigrid cycles are performed. The result (not the exact solution, in general,
but only an approximation) is propagated to level 2, where µ2 multigrid cycles are
performed, and so on. The algorithm terminates upon reaching a predefined finest
level. The cost of a full multigrid run, denoted by K , depends on the number of cy-
cles µl performed on each level l and on the cost kl of a multigrid cycle on that level.

The discretization technique that is used for constructing the mesh hierarchy
influences both the cost of the multigrid cycles and the accuracy they can achieve.
The error and cost model assumes that the number of mesh points in each space
dimension doubles when going from one mesh to the next finer one. A doubling of
the mesh points means that the distance h between the points is halved:

hl = 1

2
hl−1 . (5.1)

138

www.manaraa.com

5.1. AN ERROR AND COST MODEL FOR THE FULL MULTIGRID ALGORITHM

Using regular meshes, it is easy to construct such a mesh hierarchy. Recall from Sec-
tion 2.4 that the Bey tetrahedral refinement used in HHG satisfies this property. For
other mesh generation techniques, like adaptive refinement, or when coarsening an
initial fine mesh, this property may not hold. In this case, the cost model would have
to be adapted.

In general, the analytic solution of a PDE cannot be reproduced exactly by solv-
ing the corresponding discrete system of equations. The difference between analytic
and discrete solution, the discretization error, will be denoted with e∗. Its magnitude
depends on the discretization technique, the smoothness of the analytic solution,
and the mesh resolution. In the basic model we assume that e∗ follows perfectly an
O(h2) behavior, i. e., with (5.1),

e∗l = 1

4
e∗l−1 for all l > 0.

Imposing, without loss of generality, a normalization of the initial discretization er-
ror on level 0 as e∗0 = 1, the discretization error on level l is given by

e∗l = 2−2l = 4−l . (5.2)

While full multigrid can be considered a direct solver, its building blocks, the
multigrid cycles, are iterative solvers. Starting from an initial guess, iterative solvers
approach the discrete solution not in one step, but in several iterations. The differ-
ence between the discrete solution and the approximate solution after an iteration
is called algebraic error. The total error, denoted by e, is the sum of discretization
and algebraic error.

The cost of a multigrid cycle on level l is the sum of the costs of its basic build-
ing blocks on level l (smoothing, residual calculation, restriction, and prolongation)
plus the cost of a multigrid cycle on level l −1. The costs of the building blocks are
assumed to be proportional to the number of mesh points on that level. To describe
the cost of a multigrid cycle, we use abstract work units that are proportional to the
number of mesh point updates during that cycle. The cycleopt library can also use
the actual execution times for the optimization.

With (5.1), the number of mesh points on level l of a mesh in d spatial dimen-
sions is given by 2dl . With these assumptions, the cost kl of a multigrid cycle on level
l is given by kl = 2dl +kl−1. Setting, without loss of generality, the cost for solving the
linear system on the coarsest mesh to 1 (k0 = 1), we can eliminate the recursion, and

kl =
l∑

i=0
2di . (5.3)

The factor by which the algebraic error (not the total error) is reduced by an iter-
ative solver in each iteration is called convergence rate and denoted by ρ. Section 5.3
will show that the convergence rate is usually different for each level and for each
multigrid iteration at that level. For our basic error and cost model we assume that
the convergence rate is constant.

The basic model will assume that the full multigrid starts at level 0 with solving
the linear system. In general, full multigrid can start with solving at an arbitrary level
ls ≥ 0. This will be covered by the extended model. The finest level lf > ls depends on
the desired accuracy of the solution. The desired accuracy is specified by the user as
an error target, denoted by e†, that must not be exceeded upon termination of the

139

www.manaraa.com

CHAPTER 5. OPTIMIZATION OF MULTIGRID CYCLES

e∗0 = 1

e∗1 = 1/4

e∗2 = 1/16

e†

e
e0

e1 = e∗1 +ρ1(e0 −e∗1)

e2 = e∗2 +ρ2(e1 −e∗2)

0 1 2 l

e∗

Figure 5.2: Error reduction, according to the basic error model, for a full multigrid
run with µ1 = 1 and µ2 = 2.

full multigrid run. If the discretization error on the finest mesh was larger than the
error target, the accuracy goal could not be reached. Therefore, lf can be any integer
that is large enough to ensure

e∗lf
< e† . (5.4)

The case e∗lf
= e† is not allowed, because, except for special cases, ρ is larger than 0.

This means that the algebraic error will never vanish completely, and the total error
will always be larger than the discretization error.

The basic model

Fig. 5.2 depicts the total error e, as it is reduced in the course of a full multigrid run.
Assuming a constant convergence rate, every multigrid cycle on level l reduces the
algebraic error el − e∗l by a factor of ρ. The initial error el (after prolongating from
level l − 1, but before performing any multigrid cycles) is assumed to be equal to
el−1. Therefore, after µl iterations on level l , the total error is

el = e∗l +ρµl
(
el−1 −e∗l

)
. (5.5)

Recursively using this equation for el−1 yields

el = e∗l +ρµl
(
e∗l−1 +ρµl−1

(
el−2 −e∗l−1

)−e∗l
)

= e∗l +ρµl
(
e∗l−1 −e∗l

)+ρµl+µl−1
(
el−2 −e∗l−1

)
. (5.6)

The total error on level 0 is equal to the discretization error (e0 = e∗0), because
the linear system is solved exactly on this level. Using this terminal and (5.2), the
recursive equation (5.6) can be written as a sum to describe the total error on the
finest level:

elf = e∗lf
+

lf∑
l=1

(
e∗l−1 −e∗l

)
ρµlf

+...+µl

= 4−lf +
lf∑

l=1
3 ·4−lρµlf

+...+µl . (5.7)

The total cost K of the full multigrid algorithm is the sum of the costs of all multi-
grid cycles on all levels.

K =
lf∑

l=0
µl kl with µ0 = 1 and k0 = const . (5.8)

140

www.manaraa.com

5.2. BRANCH AND BOUND OPTIMIZATION

5.2 Branch and bound optimization

In order to find and apply a suitable optimization algorithm, we cast our cost op-
timization problem into the form of a standard minimization problem. The aim of
the optimization is to minimize the total cost K of a full multigrid run. The variables
that can be modified in order to find a minimal solution are the numbers of multi-
grid cycles, µl . The error target e† acts as a constraint to the minimization, because
it determines the feasible values for the µl .

The optimization problem

We can formally write this optimization problem as

min
(µ1,...,µlf

)T

lf∑
l=1

µl kl

such that elf ≤ e†

µ1, . . . ,µlf ∈ N0 = {0,1,2,3, . . .} .

(5.9)

Note that for l = 0 we have µ0 = 1 and, thus, the leading term of the sum in the
objective function was omitted.

Replacing elf by its expression in (5.7) shows that (5.9) is a nonlinear program-
ming problem, because the µl appear in the exponent of ρ:

min
(µ1,...,µlf

)T

lf∑
l=1

µl kl

such that
lf∑

l=1
3 ·4−lρµlf

+...+µl ≤ e† −4−lf

µ1, . . . ,µlf ∈ N0 .

Since the µl can only be integers, the problem falls into the category of nonlinear
integer programming problems.

Branch and bound algorithms

Since the number of integer variables in problem (5.9) is rather small, an exact solu-
tion method based on a B&B procedure appears to be appropriate. In the following,
we will briefly explain how the B&B algorithm works. For a detailed discussion we
refer to [36].

As depicted in Fig. 5.3, the B&B algorithm spans a search tree, evaluating the cost
of possibly every feasible assignment of values to the variables. The first level of the
tree contains nodes for all feasible values of the first variable. Branches lead from
each node on the first level to nodes on the second level, connecting each feasible
value for the first variable with all feasible values for the second variable. The num-
ber of levels in the tree is equal to the number of variables. Each path through the
tree represents exactly one configuration, i. e., an assignment of values to all vari-
ables.

If there are mi feasible values for variable i , then there are m1m2 nodes on the
second level of the tree. If there are n variables, the complete tree has n levels, and
the number of nodes on the last level is

∏n
i=1 mi . However, if the set of feasible val-

ues is infinite for one or more variables the search tree is infinitely large, and the
B&B algorithm does not terminate. Even if the tree has a finite size, it has usually too

141

www.manaraa.com

CHAPTER 5. OPTIMIZATION OF MULTIGRID CYCLES

3.13e-2

7.81e-2

15

3.13e-1

29

1.25e+0

35

1.06e+0

36

2.66e-1

30

2.66e-1

30

1.25e+0

39

8.75e-1

37

1.02e+0

45

3.31e+0

44

1 2 3

2 3 0 1 2

2 3 µl
el−1∑lf

i=l µi ki

Legend:

Figure 5.3: Example of a branch and bound tree.

many nodes to be searched completely in reasonable time. Therefore, an essential
part of an efficient B&B algorithm is a set of bounds narrowing the range of feasible
values for each variable. Bounds may result from the constraints of the optimization
problem, but they may also be constructed using deeper knowledge about the op-
timization problem that is not explicitly expressed in the constraints. Bounds can
either be static for all nodes in the search tree or depend dynamically on the branch
that is currently evaluated. No matter what type the bounds are of, their purpose is
to cut off branches that will not lead to optimal solutions.

A B&B tree can be traversed in breadth-first or depth-first order. Breadth-first
means that all nodes on one level are evaluated regarding their cost, before any
nodes on the next level are evaluated. Depth-first search means that for every node
all the connected nodes on subordinate levels are examined, before more nodes on
the same level are examined. Depending on the situation, one or the other search
method may be advantageous. As elaborated below, depth-first search will be prefer-
able for problem (5.9).

A B&B algorithm for our optimization problem

To adapt the generic B&B algorithm to our problem, we need to decide in what or-
der to map the variables to the levels of the search tree, and find good bounds to
cut down on the search tree. In order to get good bounds early in the B&B tree, we
will branch on the µl in the order of decreasing l , i. e., beginning with variable µlf

,
continuing with variable µlf−1, and so on. This order is preferable, because, as will
become clear below, for determining upper and lower bounds for µl all µL on the
finer levels L > l have to be fixed.

Bounds for µl can be derived from the error model. Solving (5.5) for µl yields

µl = logρ
el −e∗l

el−1 −e∗l
. (5.10)

142

www.manaraa.com

5.2. BRANCH AND BOUND OPTIMIZATION

Assuming values or bounds for the errors el−1 and el , we can calculate bounds for
the number of cyclesµl . For the upper and the lower bound onµl common assump-
tions about el can be used. On lf, the finest level, we set elf to the highest admissi-
ble error, e†. This means that the optimization will make sure that the final error is
smaller or equal to e†, but it will not attempt to reduce the error even further. For the
levels l < lf the error el is assumed to equal el+1 before any multigrid cycles on level
l +1 are performed. By rearranging (5.5), el can be computed from el+1 and µl+1:

el = e∗l+1 +ρ−µl+1
(
el+1 −e∗l+1

)
. (5.11)

If elf is known, el can be calculated for any l < lf by recursively evaluating (5.11) for
all levels from l to lf −1. However, the µL for all levels L > l have to be known, too.
That is why the variables have to be assigned to the search tree levels in the order of
descending full multigrid level.

Now that el has been fixed, finding upper and lower bounds for el−1 will provide
us with upper and lower bounds for µl . ρ is between 0 and 1, and both el−1 and el

are larger than e∗l . The logarithm is a monotonically decreasing function for a basis
in (0,1) and an argument larger than 0. Therefore, µl in (5.10) is maximal if el−1 is
maximal. el−1 achieves its maximal value if no multigrid cycles are performed on
any of the coarser levels. In this case el−1 = e∗0 , because the linear system has been
solved exactly on level 0. Therefore, the upper bound on µl , denoted by µ+

l , is the
smallest integer inN0 such that

µ+
l ≥ logρ

el −e∗l
e∗0 −e∗l

. (5.12)

For finding a lower bound on µl we use the fact that the total error can not be
smaller than the discretization error. Hence,µ−

l ∈N0 is the smallest integer satisfying

µ−
l > logρ

el −e∗l
e∗l−1 −e∗l

. (5.13)

The B&B algorithm is initiated by branching on the variable µlf , generating child
nodes for µlf ∈ {µ−

lf
, . . . ,µ+

lf
}. Three values are associated with each node:

• µ, the value of µlf at this node,

• µlf klf , the cost that is added to the total cost K if µlf =µ,

• elf−1 = e∗lf
+ρ−µlf (elf − e∗lf

), the error that will be needed for determining µlf−1

when branching from this node.

The node with the lowest cost is expanded recursively in a depth-first search

strategy. On each level l the node with the smallest accumulated cost
∑lf

i=l µi ki is
selected for further branching. The number of multigrid cycles on level 1 is then
uniquely determined by µ1 = µ+

1 . As soon as level 1 is reached for the first time, a
feasible solution (µ1, . . . ,µlf)

T is obtained with the currently best known cost value
Kbest.

With Kbest, the algorithm has found an upper bound on the optimal solution
value of problem (5.9). This value may provide a new upper bound for µl that is
better than the one provided by (5.12). Since kl is always positive, it does not make

143

www.manaraa.com

CHAPTER 5. OPTIMIZATION OF MULTIGRID CYCLES

sense to branch on nodes that have already accumulated a cost higher than Kbest.
Therefore, if the maximum µ+

l ∈N0 that fulfills

µ+
l ≤ 1

kl

(
Kbest −

lf∑
i=l+1

µi ki

)
(5.14)

is smaller than the µ+
l provided by (5.12), then it is used as upper bound.

The depth-first search is continued until there are no more nodes to investigate.
The best known solution vector (µ1, . . . ,µlf)

T and Kbest are updated whenever an-
other, better solution is found during the search. If several solutions achieve the
same optimal cost value, the solution with the smallest total error elf according to
(5.7) is preferred.

Fig. 5.3 shows a theoretical example for a B&B tree. It assumes a 3D computation
(d = 3) on up to four levels (lf = 3). The assumed convergence rate of a multigrid cy-
cle is ρ = 1/4. The error target is set to e† = 2e∗3 = 1/32. The optimal solution for this
problem is (2,2,1)T with a cost of 35. None of the other branches has to be evaluated
all the way down to level 1, except for the branch (3,0,2)T , which has still got a quite
promising cost of 30 on level 2.

5.3 Integrating model extensions into the optimization

The model derived in the last section includes all the basic concepts, but it is miss-
ing some details that are necessary to represent a “real life” full multigrid algorithm.
These details will be integrated into the model in the following. The final model in-
cluding all the extensions is presented at the end of the section.

Coarsest level is not level 0

The linear system is not necessarily solved on level 0. For example, in HHG the coars-
est refinement level at which a tetrahedron has interior unknowns is level 2. Thus,
ls ≥ 2 for a full multigrid algorithm within HHG; levels 0 and 1 are not used. There-
fore, the optimizer has to allow the user to specify a coarsest level ls 6= 0. This changes
(5.7) and (5.8) into

elf = 4−lf +
lf∑

l=ls+1
3 ·4−lρµlf

+...+µl and (5.15)

K =
lf∑

l=ls+1
µl kl . (5.16)

The optimization algorithm is not changed in principle by this modification, it
just has to terminate the recursive search at level ls +1. The cost for solving the lin-
ear system on level ls can safely be ignored in the optimization, because ls is fixed
throughout the optimization, and our aim is to find µl for l = ls +1, . . . , lf.

Arbitrary order of the discretization error

The discretization error depends on the selected discretization method, the smooth-
ness of the solution, and other factors. Usually, only the order of the discretization

144

www.manaraa.com

5.3. INTEGRATING MODEL EXTENSIONS INTO THE OPTIMIZATION

error is known. e∗ is of order D , if there exists a constant c∗ > 0 such that, for all
levels l = ls, . . . , lf,

e∗l ≤ c∗2−Dl . (5.17)

D and c∗ are assumed to be independent of the level.
Equation (5.5) can be reordered into

el = (
1−ρµl

)
e∗l +ρµl el−1 .

Since ρµl < 1 and e∗l > 0, plugging (5.17) into this equation yields

el ≤ (
1−ρµl

)
c∗2−Dl +ρµl el−1

= c∗2−Dl +ρµl
(
el−1 − c∗2−Dl

)
. (5.18)

Additional interpolation error

In practice, the error after interpolating the approximate solution from level l −1 to
level l is not equal to the error on the coarse level. The interpolation error e↑l depends
on the selected interpolation method. Like the discretization error, it also depends
on other characteristics of the PDE, and it is only known approximately. The inter-
polation error is defined by its order P and a bounding constant c↑, such that

e↑l ≤ c↑2−Pl . (5.19)

The interpolation error e↑l is added to the error el−1, before the multigrid cycles
are performed on level l . Therefore, (5.5) becomes

el = e∗l +ρµl
(
el−1 +e↑l −e∗l

)
≤ e∗l +ρµl

(
el−1 + c↑2−Pl −e∗l

)
. (5.20)

Level- and iteration-dependent convergence rates

If a multigrid cycle is run repeatedly, the convergence rates are usually very good in
the beginning, but then they deteriorate and approach an asymptotic convergence
rate [48]. An example of this behavior is shown in Fig. 5.4. The figure also points
out that the level influences the value of the asymptotic convergence rate and the
characteristics of approaching that value. On the coarser levels the influence of the
boundary is more prominent than on the fine levels, and the type of boundary con-
ditions influences the convergence rates.

To account for varying convergence rates in the error model, we replace the pa-
rameter ρ by a set of parameters ρl ,i containing the convergence rate of each multi-
grid cycle i on each level l . Now, the total convergence rate on level l can not be
written simply as ρµl , any more, but has to be written as a product of individual ρl ,i .
Equation (5.5) becomes

el = e∗l + (
el−1 −e∗l

) µl∏
i=1

ρl ,i .

The convergence rates ρl ,i are often not known in as much detail as depicted in
Fig. 5.4, before the solver is actually started. Fortunately, though, the optimization
algorithm is fast enough not to harm the overall program run time, even if it is re-
run several times during a full multigrid run. Therefore, the optimization should be
re-run, whenever new convergence rates are available.

145

www.manaraa.com

CHAPTER 5. OPTIMIZATION OF MULTIGRID CYCLES

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

2 4 6 8 10 12 14

C
o

n
ve

rg
en

ce
ra

te

Iteration

3 levels
7 levels

Figure 5.4: Level- and iteration-dependent convergence rates of HHG. The conver-
gence rates are reported for the first 15 iterations on 3 and 7 levels.

Modifications of the B&B algorithm

The extensions discussed in this section do not affect the B&B algorithm in general,
but the only modification is the calculation of µ−

l and µ+
l for l = ls + 1, . . . , lf. If all

extensions from above are included, (5.5) becomes

el ≤ c∗2−Dl +
(
el−1 + c↑2−Pl − c∗2−Dl

) µl∏
i=1

ρl ,i . (5.21)

For the lower bound on µl the arguments from Section 5.2 still hold. Thus, µ−
l is

the smallest µl ∈N such that

µl∏
i=1

ρl ,i < el − c∗2−Dl

c∗2−D(l−1) − c∗2−Dl + c↑2−Pl
(5.22)

for l = ls +1, . . . , lf.
For determining the upper bound on µl , Section 5.2 assumed that no multigrid

cycles are performed on the levels from ls + 1 to l − 1. The solution obtained on ls

has to be prolongated all the way up to l . The error of a prolongation across more
than one level is not included in the present model, neither is such a prolongation
implemented in most multigrid solvers. In HHG, a prolongation across several levels
is achieved via a sequence of prolongations between subsequent levels. Therefore,
we model the prolongation error in that case as a sum of the individual prolongation
errors. With this assumption, µ+

l is the smallest µl ∈N such that

µl∏
i=1

ρl ,i ≤ el − c∗2−Dl

c∗2−Dls − c∗2−Dl + c↑
l∑

i=ls+1
2−Pi

(5.23)

for l = ls +1, . . . , lf.

146

www.manaraa.com

5.4. IMPLEMENTATION

Note that (5.22) and (5.23) do not provide, in comparison to (5.13) and (5.12), a
direct formula for µ−

l and µ+
l . The values can be computed by iteratively multiplying

ρl ,i until the bounds are satisfied. In practice, the µl are small (below 10), so com-
puting these products and storing them for recurring use does not pose efficiency
problems.

5.4 Implementation

The presented multigrid cycle optimization is available in the cycleopt library [23].
It provides interfaces to the C and C++ programming languages; it can also be used
from FORTRAN programs via the C interface.

Features

The cycleopt library uses the extended model from Section 5.3 by default. Users can
also provide their own error and/or cost models in the form of call-back functions.
Instead of using a cost model, it is also possible to specify the actual—level- and
iteration-dependent—run times of the multigrid cycles. Doing so captures algorith-
mic and hardware influences on run time more accurately and yields better opti-
mization results.

It is possible to choose between constant and variable convergence rates. If only
one convergence rate is provided, cycleopt uses it for all levels and iterations. For
best optimization results it is advisable, though, to specify individual convergence
rates for each level and iteration.

The more accurately the convergence rates and costs are known, the better will
be the results of the optimization. Therefore, individual ρl ,i and kl ,i can be provided
to cycleopt once they become available. Cycleopt will then use them in subsequent
optimization runs. Ideally, the accurate numbers are available right from the start.
That is not the case in reality, but when multigrid cycles are applied to similar linear
systems, the convergence rates will be similar. Analogously, as long as the full multi-
grid solver is run on the same hardware, run times will be similar. Therefore, conver-
gence rates and costs measured during previous full multigrid runs should be used
right from the start in future runs on similar systems and/or hardware, allowing the
optimizer to return realistic results already in the beginning of a full multigrid run.
To facilitate this, the cycleopt library provides functionality for saving the ρl ,i and
kl ,i in files and loading them in subsequent runs.

Usage

Detailed usage instructions with code examples are available in the library’s docu-
mentation. Here, we provide some general remarks on using the optimizer in prac-
tice.

The convergence rate has been defined as the factor by which the algebraic error
is reduced per iteration. In practice, however, the error not known, because the exact
solution is not known. Therefore, the convergence rate must be computed using the
residual, which is directly connected to the error through the operator of the linear
system (see Section 2.3).

Computing the residual norm is not for free, of course. In order to determine all
convergence rates, the residual norm has to be computed after every multigrid cy-
cle. To obtain the convergence rate of the first cycle on a level, the norm does even

147

www.manaraa.com

CHAPTER 5. OPTIMIZATION OF MULTIGRID CYCLES

have be computed after the prolongation from the coarser level. Considering that
often only one or two multigrid cycles are performed on each level, the additional
cost for obtaining the convergence rates can be quite high. In HHG, a multigrid cycle
for a linear system with about 2 ·1010 unknowns, executed on 1024 cores of a Cray
XT4 computer, takes about 3.2 s, while computing the residual norm takes about
1.0 s. This example shows that it would be very valuable to have a method for pre-
dicting convergence rates. Comparing the curves for 7 and 3 levels in Fig. 5.4 shows
that such predictions may be quite simple in some cases, but will be unreliable in
other cases. Therefore, a convergence rate prediction is not yet implemented in cy-
cleopt. Developing good models for estimating convergence rates in different situ-
ations would, however, be a worthwhile research topic. The results could easily be
included into cycleopt.

5.5 Examples

This section presents an example of a real full multigrid run with HHG, in which the
execution time was reduced by 35 % using the presented cycle optimization. Since
some interesting optimization results can be better presented with artificial constel-
lations, we first show some theoretical examples.

5.5.1 Theoretical examples

Choosing from multiple solutions with the same cost

For some combinations of parameters the optimization yields multiple solutions.
They all have the same cost, but they may lead to different elf , because minimizing
the final error is not an optimization criterion. In the following example a full multi-
grid run with the parameters d = 1, ρ = 0.35, D = 2, c∗ = 1, and c↑ = 0 is optimized.
The table shows the three optimal solutions for e† = 8.6e-5, ls = 0, and lf = 7. They
all have a cost of 596.

µ1 µ2 µ3 µ4 µ5 µ6 µ7 elf K

4 3 2 1 3 1 3 8.5928e-5 596
4 1 3 1 3 1 3 8.5524e-5 596
4 1 1 2 3 1 3 8.5897e-5 596

If several optimal solutions are found, the cycleopt library will select the one with
the smallest elf . From the above solutions, (4,1,3,1,3,1,3)T would thus be selected.

Skipping levels

The second example reviews an observation we already made in the introduction
of the B&B algorithm: the optimal solution may have µl = 0 for some l . In practice,
however, it may not be feasible to skip levels. Therefore, the cycleopt library can
be forced to generate only solutions with µl > 0 for all l . For the parameters d = 1,
ρ = 0.1, D = 2, c∗ = 1, c↑ = 0, e† = 7.2e-5, ls = 0, and lf = 7, the optimal solution is
shown in the table below. It is compared to the optimal solution with the constraint
that µl > 0, which is more expensive, of course.

148

www.manaraa.com

5.5. EXAMPLES

µ1 µ2 µ3 µ4 µ5 µ6 µ7 elf K

1 0 2 0 2 0 2 7.1964e-5 338
1 1 1 1 1 1 2 6.4081e-5 382

Increasing the finest level

Sometimes the cheapest solution is found for an lf that is larger than the one given
by (5.4). Recall that a multigrid cycle on level lf reduces only the difference (elf −e∗lf

),

but not elf itself, by a factor of ρ. Thus, if e† is very close to e∗lf
, many multigrid cycles

are required on lf to push elf below e†. In this case, it may be cheaper to increase lf,
because then the difference (elf − e∗lf

) increases, and the multigrid cycles are more
effective in reducing elf

. The following table shows the optimal solutions for lf = 6
and lf = 7 for a full multigrid run with the parameters d = 1, ρ = 0.3, D = 2, c∗ = 1,
c↑ = 0, and e† = 1.01e∗6 = 2.4658e-4.

µ1 µ2 µ3 µ4 µ5 µ6 µ7 elf K

2 1 2 1 3 5 0 2.4656e-4 456
2 1 1 2 2 1 1 2.4114e-4 304

In practice, it is not always possible to go to the next finer level, e. g., due to stor-
age space restrictions on the computer. The advice to users of the cycleopt library is
to set lf to at least one level higher than suggested by (5.4), if the hardware config-
uration permits it. The additional level will only be used if it gives a cost reduction,
otherwise µlf will be set to 0. Increasing lf increases the run time of the optimization
only marginally, because infeasible branches with µlf > 0 will be detected early in
the B&B algorithm.

5.5.2 Optimization of an HHG full multigrid run

The efficacy of cycleopt under real-life conditions is demonstrated with a full multi-
grid run of HHG solving model problem (2.1). Since the analytic solution to this
problem is known, the discretization error is accessible, which enables us to doc-
ument the feasibility of the optimization results. We perform the optimization with
the extended error and cost model that was derived in Section 5.3. By comparing the
discrete solution found by HHG with the analytic solution, the error bounding con-
stants were identified as c∗ = 91 and c↑ = 229. The orders of the discretization and
interpolation operators are D = P = 2. Usually, these constants can, for the lack of
an analytic solution, not be calculated that exactly, but they can be estimated, e. g.,
by evaluating the curvature of the solution.

We choose to start the full multigrid run on the coarsest possible level, ls = 2, and
proceed up to lf = 6. Furthermore, we demand an error target of e† = 3.5e6 = 0.078.

Fig. 5.5 compares three full multigrid runs that achieve the given error target,
which is marked with a horizontal line. The first run uses an experimentally deter-
mined configuration with two V-cycles on every level. Using only one cycle per level
is not sufficient; the final error is e6 = 1.1. Two cycles per level yield an acceptable
solution with e6 = 0.039 after an execution time of 1.3 s. The figure shows how the
full multigrid algorithm reduces the error over time. After solving the linear system

149

www.manaraa.com

CHAPTER 5. OPTIMIZATION OF MULTIGRID CYCLES

0.01

0.1

1

10

0 0.2 0.4 0.6 0.8 1 1.2 1.4

E
rr

o
r

Time (s)

Error target
2,2,2,2 cycles
3,2,2,1 cycles
1,1,2,1 cycles

Figure 5.5: Optimization of a full multigrid run in HHG.

on level 2, the initial error is 4.8 (this is the discretization error on level 2). The four
prolongations are visible as peaks in the error curve.

The configuration for the second run was determined by the B&B optimization,
assuming a constant convergence rate of ρ = 0.3. The optimization finds (3,2,2,1)T

on levels 3 to 6 to be the cheapest pattern that fulfills the error bound. A full multigrid
run with this cycle pattern takes 1.1 s, which is an improvement of 15 % over the
experimental configuration.

For finding the third pattern, (1,1,2,1)T , the optimizer was provided with the
convergence rates measured during the previous runs. With this more realistic esti-
mate of the convergence rates at hand the optimizer is able to reduce the execution
time by another 0.24 s. The third setup takes 0.85 s, 35% less than the experimental
configuration.

5.6 Further model extensions and related work

As the examples show, The optimization yields valuable run time reductions already
in its present form. Some ideas for further model extensions that could reduce the
run times even more are presented here. Other research groups have made similar
efforts to optimize parameters of their multigrid algorithms. We collect their ideas
in this section and analyze how they connect to our optimization approach.

The level on which the linear system is solved up to the discretization error,
ls, has always been assumed to be a parameter set by the user. Provided that the
costs for solving the linear system on different levels can be provided by the user,
ls could also be treated as a variable in the optimization. On the coarse levels the
cost does usually not follow the 2−dl model, any more. In parallel multigrid meth-
ods, for example, communication latency becomes more dominant as the number
of unknowns per process decreases, which leads to longer run times than predicted
by the model. Therefore, it makes sense to start the full multigrid algorithm at a finer

150

www.manaraa.com

5.6. FURTHER MODEL EXTENSIONS AND RELATED WORK

level than the coarsest one possible.
As shown in the examples, it can be advantageous to set lf to a higher level than

the coarsest one required by the error target. Currently, it is left to the user to check
for that, but finding the best lf could also be included in the optimization.

Since the early days of multigrid, researchers have been trying to optimize the
spatial distribution of computational work, e. g., Brandt [13] and Bai [6]. More re-
cently, De Sterck et al. have pursued research in that direction, too [16]. Their op-
timization methods aim at reaching a specified error target with minimal work by
shifting computational work to regions with a high local error.

Research by Chan et al. on automatically tuning multigrid cycles has been pre-
sented at the 2009 Copper Mountain multigrid conference [15]. Their method auto-
matically adapts the recursive structure of W-cycles to given hardware and problem
characteristics in order to maximize the cycle’s error reduction per run time.

151

www.manaraa.com

CHAPTER 5. OPTIMIZATION OF MULTIGRID CYCLES

152

www.manaraa.com

Chapter 6

Conclusion

The main focus of this work was the integration of adaptive refinement into HHG. In
order to maintain performance and scalability, it was crucial for the implementation
to respect HHG’s core concepts, the patch-wise regularity of the meshes and the
locality of communication.

The adaptive refinement scheme was developed out of HHG’s existing finite ele-
ment solver. Interpreting the finite element method’s basis functions in a hierarchi-
cal way allowed for eliminating computation and communication in parts of the fi-
nite element mesh without sacrificing the mathematical correctness of the multigrid
algorithms. Retaining HHG’s locality of communication however required imposing
some restrictions on the smoothness of the PDE’s right-hand side, which may not
always be given. The resulting adaptive refinement scheme demanded for the im-
plementation of special numerical building blocks in HHG. The concept of hyper-
planes was used for modeling and implementing new types of data dependencies
between mesh primitives at different refinement levels. The new solver is completed
by a distributed adaptive mesh refiner. Its scalability to large numbers of processes
is ensured by using local communication whenever possible.

As a primer for the work on the adaptive refinement algorithm, HHG’s perfor-
mance and scalability was assessed on different architectures. Therefore, HHG was
run on several supercomputers, which were among the largest and fastest avail-
able at the time of the assessment. An SCons-based build system was developed
for that purpose. It allowed for a quick roll-out on all platforms, including tailoring
of build parameters and integration of platform-specific code (e. g., for profiling).
Performance data (e. g., execution times) was measured and evaluated with a newly
implemented performance analysis toolkit, which is tailored towards the special re-
quirements of multigrid algorithms.

The new adaptive refinement solver was evaluated in experiments with different
numerical problems. The tests showed that adaptive refinement is effective and has
the potential for drastically reducing the computation and communication effort
for solving numerical problems. However, an important finding is also that apply-
ing adaptive refinement blindly to a problem with unknown characteristics is dan-
gerous. Under some circumstances (for polynomial problems on highly structured
meshes) adaptive refinement can deteriorate the quality of the solution. Even for
the problems that are well-suited for adaptive refinement it is still crucial to choose
the refined parts of the mesh properly in order to avoid artifacts at the refinement
boundaries.

153

www.manaraa.com

CHAPTER 6. CONCLUSION

In a separate project, which was conducted together with Alexander Thekale
from the Department of Applied Mathematics at the University of Erlangen-Nürn-
berg, an approach for reducing the computational effort of full multigrid was de-
veloped. It uses mathematical optimization to determine the optimal number of V-
cycles in each step of the full multigrid algorithm. In practical experiments the ap-
proach reduced the computational effort of full multigrid by up to 35 %. The project
would probably not have been conducted without the contact to Alexander, which
was founded in the interdisciplinary doctorate program Identification, Optimiza-
tion, and Steering for Technical Applications by the Elite Network of Bavaria [9].
Thus, the project is a good example that bringing together scientists from different
disciplines in such programs is helpful and necessary.

As recent publications by Gmeiner et al. showed, HHG still provides interesting
topics for further research (see, e. g., [18]). In particular, the adaptive refinement al-
gorithm provides several new topics. The most important one at the time of this
writing is to conduct extended performance and scalability measurements on cur-
rent hardware. A further task, highly demanding in both the mathematical and the
software engineering components, will be to analyze whether higher-order inter-
polation can be implemented efficiently in HHG. This would help in making the
adaptive refinement solver less susceptible to numerical errors at the refinement
boundaries.

In the area of algorithm development, one of the most important next steps will
be the integration of a (semi-)automatic mesh refiner that uses, e. g., the residual or
the solution curvature for determining which parts of the mesh need to be refined.
This will enable HHG to be used with adaptive refinement in “real-world” applica-
tions, which generally have meshes that are too complicated to be refined manu-
ally. Acoustics simulations (e. g., room acoustics) and geophysical simulations (e. g.,
earth mantle convection) are good candidates, because they combine exactly the
requirements that HHG meets especially well: basically irregular geometries that,
however, contain large regular areas, and the need for—compared to the domain
sizes—extremely fine mesh resolutions.

154

www.manaraa.com

Appendix A

The complete adaptive
refinement algorithm

This appendix collects the functions that implement the adaptive refinement al-
gorithms (Algorithms 15–20). The algorithms are distributed among the following
member functions of the class hhgAdaptiveRefiner.

• Listing A.1: refine (Algorithm 15).

• Listing A.2: refineInterior (the while loop in Algorithm 15).

• Listing A.3: refineInteriorUp (Algorithm 16).

• Listing A.4: refineInteriorDown (Algorithm 17).

• Listing A.5: addRefnBndry (Algorithm 18).

• Listing A.6: addMeshBndry (Algorithm 19).

• Listing A.7: addSecondaryRefnBndry (Algorithm 20).

Listing A.1: Implementation of Algorithm 15

1 void hhgAdaptiveRefiner::refine
2 (std::vector<hhgScalarVariable*> &unks, hhgScalarVariable &sol,
3 hhgScalarVariable &rhs, hhgScalarVariable &rhb, hhgScalarVariable &res,
4 hhgScalarVariable &reb, hhgOperator &opr, lvl_t lvlStart, lvl_t lvlMax)
5 {
6 lvl_t lvlBase = mesh_.getCoarsestLevel();
7
8 if (lvlStart < lvlBase) {lvlStart = lvlBase;};
9 if (lvlMax == lvlStart) {return;}

10
11 uint nu = unks.size();
12 std::vector<int> unkIdcs(nu); std::vector<bool> unkDMDeps(nu);
13 for (uint iu=0; iu<nu; iu++) {
14 unkIdcs[iu] = unks[iu]->getId(); unkDMDeps[iu] = unks[iu]->hasDMDeps();
15 }
16 varidx_t solIdx = sol.getId(); bool solDMDeps = sol.hasDMDeps();
17 varidx_t rhsIdx = rhs.getId(); bool rhsDMDeps = rhs.hasDMDeps();
18 varidx_t rhbIdx = rhb.getId(); bool rhbDMDeps = rhb.hasDMDeps();
19 varidx_t resIdx = res.getId(); bool resDMDeps = res.hasDMDeps();

155

www.manaraa.com

APPENDIX A. THE COMPLETE ADAPTIVE REFINEMENT ALGORITHM

20 varidx_t rebIdx = reb.getId(); bool rebDMDeps = reb.hasDMDeps();
21 varidx_t oprIdx = opr.getId();
22 dim_t dimMax = mesh_.getDimension();
23 hhgPrimitiveStore<double>& store = mesh_.getPrimitiveStore();
24
25 hhgMPIController &mpiCtrl = hhgMPIController::instance();
26 hhgPrimitiveSet<double> pb;
27
28 lvl_t lvlCoar = refineInterior (lvlStart);
29 addRefnBndry (lvlCoar);
30 addMeshBndry (lvlCoar);
31 addSecondaryRefnBndry (lvlCoar);
32 }

Listing A.2: Implementation of the while loop in Algorithm 15

1 lvl_t hhgAdaptiveRefiner::refineInterior (lvl_t lvlCoar)
2 {
3 hhgPrimitiveStore<double>& store = mesh_.getPrimitiveStore();
4
5 for (lvl_t ll=lvlCoar+1, lvlStore=store.getLMax(); ll<=lvlStore; ll++) {
6 store.removePrimitives (hhgPgRefnBndry, ll);
7 store.removePrimitives (hhgPgIntRefnBndry, ll);
8 store.removePrimitives (hhgPgExtRefnBndry, ll);
9 }

10
11 bool changes = true;
12 while (changes == true)
13 {
14 lvl_t lvlCCur = lvlCoar;
15
16 bool changesUp = refineInteriorUp (lvlCCur, lvlCoar);
17 bool changesDown = refineInteriorDown (lvlCCur);
18
19 changes = changesUp || changesDown;
20
21 char changesGlob;
22 char changesChar = changes;
23 MPI_Allreduce
24 (&changesChar, &changesGlob, 1, MPI_SIGNED_CHAR, MPI_LOR, MPI_COMM_WORLD);
25 changes = changesGlob;
26 }
27
28 return lvlCoar;
29 }

Listing A.3: Implementation of Algorithm 16

1 bool hhgAdaptiveRefiner::refineInteriorUp (lvl_t lvlCCur, lvl_t &lvlCoar)
2 {
3 varidx_t refnIdx = this->refnInfo_->getId();
4 dim_t dimMax = mesh_.getDimension();
5 lvl_t lvlRi = mesh_.getCoarsestLevel();
6 hhgPrimitiveStore<double>& store = mesh_.getPrimitiveStore();
7 lvl_t lvlStore = store.getLMax();
8 hhgMPIController &mpiCtrl = hhgMPIController::instance();
9 bool changes = false;

10
11 hhgPrimitiveSet<double> ws = store.selectGroups (hhgPgWorkingSet, lvlCCur);
12 hhgPrimitiveSet<double> pb = store.selectGroups (hhgPgProcBndry, lvlCCur);
13
14 for (dim_t dim=0; dim<=dimMax; dim++)

156

www.manaraa.com

15 {
16 for (psit_t ip=ws.begin(dim), pe=ws.end(dim); ip!=pe; ++ip)
17 {
18 hhgPrimitive<double> &prim = *(*ip);
19
20 lvl_t lvlLower;
21
22 if (dim == 0)
23 {
24 lvlLower = 0;
25 }
26 else
27 {
28 prim.copyFromLocal (refnIdx, lvlRi, hhgCptInteriorToGhost);
29
30 lvlLower = prim.maxLowerNeighLevel (refnIdx);
31
32 lvl_t lvlMaxCommonLower = prim.minLowerNeighLevel (refnIdx);
33 if (lvlMaxCommonLower < lvlCoar) {
34 for (lvl_t ll=lvlMaxCommonLower+1; ll<=lvlCoar; ll++) {
35 store.removePrimitives (hhgPgRefnBndry, ll);
36 store.removePrimitives (hhgPgIntRefnBndry, ll);
37 store.removePrimitives (hhgPgExtRefnBndry, ll);
38 }
39 lvlCoar = lvlMaxCommonLower;
40 changes = true;
41 }
42 }
43
44 lvl_t lvlTrg = hhgMax (lvlLower, prim.refnTriggered (refnIdx));
45 prim.triggerRefn (refnIdx, lvlTrg);
46
47 lvl_t lvlOld = prim.getRefnLevel();
48 if (lvlTrg > lvlOld)
49 {
50 lvlStore = store.provideLevel (lvlTrg);
51
52 if (prim.testFlag (hhgPfProcBndry)) {
53 for (lvl_t ll=lvlOld+1; ll<=lvlTrg; ll++) {
54 if (store.addPrimitive (ll, &prim)) {
55 store.addPrimitive (hhgPgProcBndry, ll, &prim);
56 }
57 }
58 } else {
59 store.addPrimitive (lvlOld+1, lvlTrg, &prim);
60 }
61
62 store.addPrimitive (hhgPgWorkingSet, lvlOld+1, lvlTrg, &prim);
63
64 lvl_t lvlRB = prim.refnBndryTriggered (refnIdx);
65 if (lvlRB) {
66 prim.clearFlag (hhgPfRefnBndry);
67 prim.triggerRefnBndry (refnIdx, 0);
68 }
69 }
70
71 if (dim > 0) {prim.copyToLocal (refnIdx, lvlRi, hhgCptInteriorToGhost);}
72 }
73
74 if (dim < dimMax) {
75 for (psit_t ip=pb.begin (dim), pe=pb.end (dim); ip!=pe; ++ip) {
76 ip->updateDmpDeps (refnIdx, lvlRi, hhgCtDirect, hhgCdSend);

157

www.manaraa.com

APPENDIX A. THE COMPLETE ADAPTIVE REFINEMENT ALGORITHM

77 }
78
79 mpiCtrl.updateDim (refnIdx, lvlRi, hhgCtDirect, dim);
80
81 for (psit_t ip=pb.begin (dim), pe=pb.end (dim); ip!=pe; ++ip) {
82 ip->updateDmpDeps (refnIdx, lvlRi, hhgCtDirect, hhgCdReceive);
83
84 if (ip->testFlag (hhgPfGhost)) {
85 lvl_t lvlTrg = ip->refnTriggered (refnIdx);
86 lvlStore = store.provideLevel (lvlTrg);
87 for (lvl_t ll=lvlCCur+1; ll<=lvlTrg; ll++) {
88 if (store.addPrimitive (ll, *ip)) {
89 store.addPrimitive (hhgPgProcBndry, ll, *ip);
90 }
91 }
92 }
93 }
94 }
95 }
96
97 return changes;
98 }

Listing A.4: Implementation of Algorithm 17

1 bool hhgAdaptiveRefiner::refineInteriorDown (lvl_t lvlCCur)
2 {
3 varidx_t refnIdx = this->refnInfo_->getId();
4 dim_t dimMax = mesh_.getDimension();
5 lvl_t lvlRi = mesh_.getCoarsestLevel();
6 hhgPrimitiveStore<double>& store = mesh_.getPrimitiveStore();
7 lvl_t lvlStore = store.getLMax();
8 hhgMPIController &mpiCtrl = hhgMPIController::instance();
9 bool changes = false;

10
11 hhgPrimitiveSet<double> ws = store.selectGroups (hhgPgWorkingSet, lvlCCur);
12 hhgPrimitiveSet<double> pb = store.selectGroups (hhgPgProcBndry, lvlCCur);
13
14 for (dim_t dim=dimMax-1, dimp=dim+1; dimp>0; dimp--, dim--)
15 {
16 for (psit_t ip=pb.begin (dim), pe=pb.end (dim); ip!=pe; ++ip) {
17 ip->updateDmpDeps (refnIdx, lvlRi, hhgCtAdjacency, hhgCdSend);
18 }
19
20 mpiCtrl.updateDim (refnIdx, lvlRi, hhgCtAdjacency, dim);
21
22 for (psit_t ip=pb.begin (dim), pe=pb.end (dim); ip!=pe; ++ip) {
23 ip->updateDmpDeps (refnIdx, lvlRi, hhgCtAdjacency, hhgCdReceive);
24 }
25
26 for (psit_t ip=ws.begin(dim), pe=ws.end(dim); ip!=pe; ++ip)
27 {
28 hhgPrimitive<double> &prim = *(*ip);
29
30 lvl_t lvlMaxHigher = prim.maxHigherNeighLevel (refnIdx);
31 lvl_t lvlTrg = hhgMax (hhgMax
32 (prim.minHigherNeighLevel (refnIdx),
33 lvlMaxHigher - 1),
34 prim.refnTriggered (refnIdx));
35 prim.triggerRefn (refnIdx, lvlTrg);
36
37 lvl_t lvlOld = prim.getRefnLevel();

158

www.manaraa.com

38 if (lvlTrg > lvlOld)
39 {
40 lvlStore = store.provideLevel (lvlTrg);
41
42 if (prim.testFlag (hhgPfProcBndry)) {
43 for (lvl_t ll=lvlOld+1; ll<=lvlTrg; ll++) {
44 if (store.addPrimitive (ll, &prim)) {
45 store.addPrimitive (hhgPgProcBndry, ll, &prim);
46 }
47 }
48 } else {
49 store.addPrimitive (lvlOld+1, lvlTrg, &prim);
50 }
51
52 store.addPrimitive (hhgPgWorkingSet, lvlOld+1, lvlTrg, &prim);
53
54 lvl_t lvlRB = prim.refnBndryTriggered (refnIdx);
55 if (lvlRB) {
56 prim.clearFlag (hhgPfRefnBndry);
57 prim.triggerRefnBndry (refnIdx, 0);
58 }
59
60 changes = true;
61 }
62
63 lvl_t lvlMaxRefnHigher = prim.maxHigherNeighRefnLevel (refnIdx);
64 if ((lvlMaxHigher > lvlTrg) || (lvlMaxRefnHigher > 0))
65 {
66 prim.setFlag (hhgPfRefnBndry);
67
68 lvl_t lvlRB = hhgMax (lvlMaxHigher, lvlMaxRefnHigher);
69 prim.triggerRefnBndry (refnIdx, lvlRB);
70
71 if (lvlTrg < lvlRB-1) {
72 prim.triggerRefn (refnIdx, lvlRB-1);
73 changes = true;
74 }
75 }
76
77 if (dim > 0) {prim.copyToLocal (refnIdx, lvlRi, hhgCptInteriorToGhost);}
78 }
79 }
80
81 return changes;
82 }

Listing A.5: Implementation of Algorithm 18

1 void hhgAdaptiveRefiner::addRefnBndry (lvl_t lvlCoar)
2 {
3 varidx_t refnIdx = this->refnInfo_->getId();
4 dim_t dimMax = mesh_.getDimension();
5 lvl_t lvlRi = mesh_.getCoarsestLevel();
6 hhgPrimitiveStore<double>& store = mesh_.getPrimitiveStore();
7 lvl_t lvlStore = store.getLMax();
8 hhgMPIController &mpiCtrl = hhgMPIController::instance();
9

10 hhgPrimitiveSet<double> ws = store.selectGroups (hhgPgWorkingSet, lvlCoar);
11 hhgPrimitiveSet<double> pb = store.selectGroups (hhgPgProcBndry, lvlCoar);
12
13 for (dim_t dim=0; dim<dimMax; dim++)
14 {

159

www.manaraa.com

APPENDIX A. THE COMPLETE ADAPTIVE REFINEMENT ALGORITHM

15 for (psit_t ip=ws.begin(dim), pe=ws.end(dim); ip!=pe; ++ip)
16 {
17 hhgPrimitive<double> &prim = *(*ip);
18
19 lvl_t lvlRB = prim.refnBndryTriggered (refnIdx);
20
21 if (lvlRB > lvlCoar)
22 {
23 lvlStore = store.provideLevel (lvlRB);
24
25 bool added = store.addPrimitive (lvlRB, &prim);
26
27 if (added && prim.testFlag (hhgPfProcBndry)) {
28 store.addPrimitive (hhgPgProcBndry, lvlRB, &prim);
29 }
30
31 store.addPrimitive (hhgPgRefnBndry, lvlRB, &prim);
32 }
33 }
34
35 for (psit_t ip=pb.begin(dim), pe=pb.end(dim); ip!=pe; ++ip)
36 {
37 hhgPrimitive<double> &prim = *(*ip);
38 if (! prim.testFlag (hhgPfGhost)) {continue;}
39
40 lvl_t lvlRB = prim.refnBndryTriggered (refnIdx);
41
42 if (lvlRB > lvlCoar)
43 {
44 lvlStore = store.provideLevel (lvlRB);
45
46 if (store.addPrimitive (lvlRB, &prim)) {
47 store.addPrimitive (hhgPgProcBndry, lvlRB, &prim);
48 }
49 }
50 }
51 }
52 }

Listing A.6: Implementation of Algorithm 19

1 void hhgAdaptiveRefiner::addMeshBndry (lvl_t lvlCoar)
2 {
3 varidx_t refnIdx = this->refnInfo_->getId();
4 dim_t dimMax = mesh_.getDimension();
5 lvl_t lvlRi = mesh_.getCoarsestLevel();
6 hhgPrimitiveStore<double>& store = mesh_.getPrimitiveStore();
7 lvl_t lvlStore = store.getLMax();
8 hhgMPIController &mpiCtrl = hhgMPIController::instance();
9

10 hhgPrimitiveSet<double> mb = store.selectGroups (hhgPgBndry, lvlCoar);
11 hhgPrimitiveSet<double> pb = store.selectGroups (hhgPgProcBndry, lvlCoar);
12
13 for (dim_t dim=0; dim<dimMax; dim++)
14 {
15 for (psit_t ip=mb.begin(dim), pe=mb.end(dim); ip!=pe; ++ip)
16 {
17 hhgPrimitive<double> &prim = *(*ip);
18
19 if (dim > 0) {prim.copyFromLocal (refnIdx, lvlRi, hhgCptInteriorToGhost);}
20
21 lvl_t lvlOld = prim.getRefnLevel();

160

www.manaraa.com

22 lvl_t lvlMaxHigher = prim.maxHigherNeighLevel (refnIdx, true);
23
24 lvlStore = store.provideLevel (lvlMaxHigher);
25 prim.triggerRefn (refnIdx, lvlMaxHigher);
26
27 bool pb = prim.testFlag (hhgPfProcBndry);
28 for (lvl_t ll=lvlOld+1; ll<=lvlMaxHigher; ll++)
29 {
30 if (store.addPrimitive (ll, &prim))
31 {
32 if (pb) {store.addPrimitive (hhgPgProcBndry, ll, &prim);}
33
34 if (prim.testFlag (hhgPfDirichletBndry)) {
35 store.addPrimitive (hhgPgDirichletBndry, ll, &prim);
36 }
37 else if (prim.testFlag (hhgPfNeumannBndry)) {
38 store.addPrimitive (hhgPgNeumannBndry, ll, &prim);
39 }
40 }
41 }
42
43 if (dim > 0) {prim.copyToLocal (refnIdx, lvlRi, hhgCptInteriorToGhost);}
44 }
45
46 if (dim < dimMax) {
47 for (psit_t ip=pb.begin (dim), pe=pb.end (dim); ip!=pe; ++ip) {
48 ip->updateDmpDeps (refnIdx, lvlRi, hhgCtDirect, hhgCdSend);
49 }
50
51 mpiCtrl.updateDim (refnIdx, lvlRi, hhgCtDirect, dim);
52
53 for (psit_t ip=pb.begin (dim), pe=pb.end (dim); ip!=pe; ++ip) {
54 ip->updateDmpDeps (refnIdx, lvlRi, hhgCtDirect, hhgCdReceive);
55
56 if (ip->testFlag (hhgPfGhost)) {
57 lvl_t lvlTrg = ip->refnTriggered (refnIdx);
58 lvlStore = store.provideLevel (lvlTrg);
59 for (lvl_t ll=lvlCoar+1; ll<=lvlTrg; ll++) {
60 if (store.addPrimitive (ll, *ip)) {
61 store.addPrimitive (hhgPgProcBndry, ll, *ip);
62 }
63 }
64 }
65 }
66 }
67 }
68 }

Listing A.7: Implementation of Algorithm 20

1 void hhgAdaptiveRefiner::addSecondaryRefnBndry (lvl_t lvlCoar)
2 {
3 varidx_t refnIdx = this->refnInfo_->getId();
4 dim_t dimMax = mesh_.getDimension();
5 lvl_t lvlRi = mesh_.getCoarsestLevel();
6 hhgPrimitiveStore<double>& store = mesh_.getPrimitiveStore();
7 lvl_t lvlStore = store.getLMax();
8 hhgMPIController &mpiCtrl = hhgMPIController::instance();
9

10 hhgPrimitiveSet<double> ws = store.selectGroups (hhgPgWorkingSet, lvlCoar);
11 hhgPrimitiveSet<double> pb = store.selectGroups (hhgPgProcBndry, lvlCoar);
12

161

www.manaraa.com

APPENDIX A. THE COMPLETE ADAPTIVE REFINEMENT ALGORITHM

13 for (dim_t dim=1; dim<=dimMax; dim++)
14 {
15 for (psit_t ip=ws.begin(dim), pe=ws.end(dim); ip!=pe; ++ip)
16 {
17 hhgPrimitive<double> &prim = *(*ip);
18
19 prim.copyFromLocal (refnIdx, lvlRi, hhgCptInteriorToGhost);
20
21 if (prim.refnBndryTriggered (refnIdx) > 0) {continue;}
22
23 lvl_t lvlPrim = prim.refnTriggered (refnIdx);
24
25 if (prim.hasLowerNeighRefnLevel (refnIdx, lvlPrim)) {
26 prim.setFlag (hhgPfIntRefnBndry);
27 store.addPrimitive (hhgPgIntRefnBndry, lvlPrim, &prim);
28 }
29
30 if (prim.hasLowerNeighRefnLevel (refnIdx, lvlPrim+1)) {
31 prim.setFlag (hhgPfExtRefnBndry);
32 store.addPrimitive (lvlPrim+1, &prim);
33 store.addPrimitive (hhgPgExtRefnBndry, lvlPrim+1, &prim);
34 }
35 }
36 }
37
38 for (dim_t dim=1; dim<dimMax; dim++)
39 {
40 for (psit_t ip=pb.begin(dim), pe=pb.end(dim); ip!=pe; ++ip)
41 {
42 hhgPrimitive<double> &prim = *(*ip);
43
44 if (! prim.testFlag (hhgPfGhost)) {continue;}
45
46 lvl_t lvlPrim = prim.refnTriggered (refnIdx);
47
48 if (prim.hasLowerNeighRefnLevel (refnIdx, lvlPrim+1)) {
49 if (store.addPrimitive (lvlPrim+1, &prim)) {
50 store.addPrimitive (hhgPgProcBndry, lvlPrim+1, &prim);
51 }
52 }
53 }
54 }
55 }

162

www.manaraa.com

Bibliography

[1] M. Ainsworth and J. T. Oden. A Posteriori Error Estimation in Finite Element
Analysis. Wiley, 2000.

[2] T. M. Apostol. Mathematical Analysis. Pearson, 1974.

[3] O. Axelsson and V. A. Baker. Finite Element Solution of Boundary Value Prob-
lems. Vol. 35. Classics in Applied Mathematics. SIAM, 2001.

[4] R. Bader. “New National Supercomputing System at LRZ: SGI Altix 4700”. In:
Innovatives Supercomputing in Deutschland (inSiDE) 4.2 (2006), pp. 30–33.

[5] R. Bader. “Upgrading the SGI Altix 4700 at LRZ”. In: Innovatives Supercomput-
ing in Deutschland (inSiDE) 5.1 (2007), pp. 6–7.

[6] D. Bai and A. Brandt. “Local Mesh Refinement Multilevel Techniques”. In: SIAM
Journal on Scientific and Statistical Computing 8.2 (1987), pp. 109–134.

[7] R.E. Bank, A. H. Sherman, and A. Weiser. “Some refinement algorithms and
data structures for regular local mesh refinement”. In: Scientific Computing,
Applications of Mathematics and Computing to the Physical Sciences, Volume I.
Ed. by R. Stepleman et al. IMACS. North-Holland, 1983.

[8] P. Bastian and C. Wieners. “Multigrid Methods on Adaptively Refined Grids”.
In: Computing in Science & Engineering 8 (6 Nov. 2006), pp. 44–54.

[9] Elite Network of Bavaria, ed. Identification, Optimization and Control with
Applications in Modern Technologies. Dec. 22, 2014. URL: https : / / www .
elitenetzwerk.bayern.de/doktorandenkollegs/doctorate-programs-
according- to- fields- of- study/identification- optimization-
and-control-with-applications-in-modern-technologies/.

[10] B. Bergen. “Hierarchical Hybrid Grids: Data Structures and Core Algorithms
for Efficient Finite Element Simulations on Supercomputers”. Dissertation.
July 2006.

[11] J. Bey. “Tetrahedral grid refinement”. In: Computing 55.4 (1995), pp. 355–378.

[12] OpenMP Architecture Review Board, ed. The OpenMP API specification for
parallel programming. Nov. 22, 2014. URL: http://openmp.org/.

[13] A. Brandt. Multigrid Techniques: 1984 Guide with Applications to Fluid Dy-
namics. Vol. 85. GMD-Studien. GMD, 1984.

[14] A. Brandt. “Multi-level adaptive solutions to boundary-value problems”. In:
Math. Comp. 31 (1977), pp. 333–390.

[15] C. P. Chan et al. “A Dynamic Programming Approach to Autotuning Multigrid”.
In: Numerical Linear Algebra with Applications (to be published in 2009).

163

https://www.elitenetzwerk.bayern.de/doktorandenkollegs/doctorate-programs-according-to-fields-of-study/identification-optimization-and-control-with-applications-in-modern-technologies/
https://www.elitenetzwerk.bayern.de/doktorandenkollegs/doctorate-programs-according-to-fields-of-study/identification-optimization-and-control-with-applications-in-modern-technologies/
https://www.elitenetzwerk.bayern.de/doktorandenkollegs/doctorate-programs-according-to-fields-of-study/identification-optimization-and-control-with-applications-in-modern-technologies/
https://www.elitenetzwerk.bayern.de/doktorandenkollegs/doctorate-programs-according-to-fields-of-study/identification-optimization-and-control-with-applications-in-modern-technologies/
http://openmp.org/

www.manaraa.com

BIBLIOGRAPHY

[16] H. De Sterck et al. “Efficiency-based h- and hp-refinement strategies for finite
element methods”. In: Numerical Linear Algebra with Applications 15 (2008),
pp. 89–114.

[17] The SCons Foundation, ed. SCons. Nov. 4, 2014. URL: http://www.scons.
org/.

[18] B. Gmeiner. “Design and Analysis of Hierarchical Hybrid Multigrid Methods
for Peta-Scale Systems and Beyond”. Dissertation. 2013.

[19] B. Gmeiner. “Extension of a Software Package for Hierarchical Hybrid Grids”.
Master’s thesis. Friedrich-Alexander-Universität Erlangen-Nürnberg, 2009.

[20] B. Gmeiner et al. “Parallel multigrid on hierarchical hybrid grids: a perfor-
mance study on current high performance computing clusters”. In: Concur-
rency and Computation: Practice and Experience 26.1 (2014), pp. 217–240.

[21] GNU, ed. Autotools. Nov. 4, 2014. URL: http://www.gnu.org/software/.

[22] M. S. Gockenbach. Understanding and Implementing the Finite Element Meth-
od. SIAM, 2006.

[23] T. Gradl, ed. Cycleopt. Nov. 16, 2014. URL: http://www.sourceforge.net/
projects/cycleopt/.

[24] T. Gradl and U. Rüde. “Massively Parallel Multilevel Finite Element Solvers on
the Altix 4700”. In: Innovatives Supercomputing in Deutschland (inSiDE) 5.2
(2007), pp. 24–29.

[25] M. Griebel. “Zur Lösung von Finite-Differenzen- und Finite-Element-Gleichun-
gen mittels der Hiearchischen-Transformations-Mehrgitter-Methode”. Disser-
tation. TU München, 1990.

[26] G. Hager et al. “RZBENCH: Performance Evaluation of Current HPC Architec-
tures Using Low-Level andăApplication Benchmarks”. In: High Performance
Computing in Science and Engineering, Garching/Munich 2007. Ed. by S. Wag-
ner et al. Springer, 2009, pp. 485–501.

[27] ISO, ed. ISO/IEC 9899:1999. Programming languages—C. Dec. 7, 2014. URL:
http://www.iso.org/iso/iso_catalogue/catalogue_ics/catalogue_
detail_ics.htm?csnumber=29237.

[28] Forschungszentrum Jülich, ed. JUGENE - Configuration. Nov. 9, 2014. URL:
http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/
JUGENE/Configuration/Configuration_node.html.

[29] A. Kennedy and H. Lederer. “DEISA Extreme Computing Initiative (DECI) and
Science Community Support”. In: Parallel Computing: From Multicores and
GPU’s to Petascale. Ed. by B. Chapman et al. Vol. 19. Advances in Parallel Com-
puting. 2010, pp. 482–491.

[30] Argonne National Laboratory, ed. The MPI Standard. Nov. 22, 2014. URL: http:
//www.mcs.anl.gov/research/projects/mpi/standard.html.

[31] S. Lang and G. Wittum. “Large-scale density-driven flow simulations using
parallel unstructured Grid adaptation and local multigrid methods”. In: Con-
currency and Computation: Practice and Experience 17 (11 2005), pp. 1415–
1440.

[32] UoE HPCX Ltd, ed. HECToR Phase 1 Hardware Configuration. Nov. 9, 2014.
URL: http://www.hector.ac.uk/service/hardware/phase1.php.

164

http://www.scons.org/
http://www.scons.org/
http://www.gnu.org/software/
http://www.sourceforge.net/projects/cycleopt/
http://www.sourceforge.net/projects/cycleopt/
http://www.iso.org/iso/iso_catalogue/catalogue_ics/catalogue_detail_ics.htm?csnumber=29237
http://www.iso.org/iso/iso_catalogue/catalogue_ics/catalogue_detail_ics.htm?csnumber=29237
http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JUGENE/Configuration/Configuration_node.html
http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JUGENE/Configuration/Configuration_node.html
http://www.mcs.anl.gov/research/projects/mpi/standard.html
http://www.mcs.anl.gov/research/projects/mpi/standard.html
http://www.hector.ac.uk/service/hardware/phase1.php

www.manaraa.com

BIBLIOGRAPHY

[33] A. Malony et al. “Advances in the TAU Performance System”. In: Tools for High
Performance Computing 2011. Ed. by H. Brunst et al. Springer, 2012, pp. 119–
130.

[34] K. Martin and B. Hoffman. Mastering CMake. Kitware, Inc., 2013.

[35] S. F. McCormick. Multilevel Adaptive Methods for partial Differential Equa-
tions. Frontiers in Applied Mathematics. SIAM, 1989.

[36] G. L. Nemhauser and L. A. Wolsey. Integer and combinatorial optimization.
Wiley, 1988.

[37] W. H. Press et al. Numerical Recipes in FORTRAN 77. Cambridge Press, 1993.

[38] D. Ritter and U. Rüde. “Experimental analysis of a Fast Adaptive Composite-
based grid expansion scheme for open boundary problems”. In: Numerical
Linear Algebra with Applications 19.2 (2012), pp. 268–278. DOI: 10.1002/nla.
1807.

[39] U. Rüde. Mathematical and Computational Techniques for Multilevel Adap-
tive Methods. Vol. 13. Frontiers in Applied Mathematics. SIAM, 1993.

[40] H. R. Schwarz. Numerische Mathematik. B. G. Teubner, 1997.

[41] V. V. Shaidurov. Multigrid Methods for Finite Elements. Vol. 318. Mathematics
and Its Applications. Kluwer Academic Publishers, 1995.

[42] D. Skinner et al. Integrated Performance Monitoring. Nov. 6, 2014. URL: http:
//ipm-hpc.sourceforge.net/.

[43] B. Stroustrup. The C++ Programming Language. Addison Wesley, 2013.

[44] K. Stüben and U. Trottenberg. “Multigrid methods: Fundamental algorithms,
model problem analysis and applications”. In: Multigrid Methods. Ed. by W.
Hackbusch and U. Trottenberg. Vol. 960. Lecture Notes in Mathematics. Sprin-
ger, 1982, pp. 1–176.

[45] E. Süli and D. F. Mayers. An Introduction to Numerical Analysis. Cambridge
Press, 2000.

[46] University of Tennessee, ed. Performance Application Programming Interface
(PAPI). Dec. 21, 2014. URL: http://icl.cs.utk.edu/papi/index.html.

[47] A. Thekale et al. “Optimizing the number of multigrid cycles in the full multi-
grid algorithm”. In: Numerical Linear Algebra with Applications 17.2–3 (2010),
pp. 199–210.

[48] U. Trottenberg, C. Oosterlee, and A. Schüller. Multigrid. Elsevier, 2001.

[49] R. Verfürth. A Review of A Posteriori Error Estimation and Adaptive Mesh-Refi-
nement Techniques. Wiley-Teubner, 1996.

165

http://dx.doi.org/10.1002/nla.1807
http://dx.doi.org/10.1002/nla.1807
http://ipm-hpc.sourceforge.net/
http://ipm-hpc.sourceforge.net/
http://icl.cs.utk.edu/papi/index.html

www.manaraa.com

ProQuest Number:

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent on the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Published by ProQuest LLC (

 ProQuest

). Copyright of the Dissertation is held by the Author.

All Rights Reserved.
This work is protected against unauthorized copying under Title 17, United States Code

Microform Edition © ProQuest LLC.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346

10706051

10706051

2021

	Introduction
	Basics
	The model problem
	Finite element methods
	Introduction
	Numerical quadrature
	Integrals over non-trivial domains
	The weak form of a PDE
	Other boundary conditions
	The Galerkin method with polynomial basis functions
	Assembling the linear system

	Multigrid methods
	Introduction
	Multigrid building blocks
	Types of multigrid cycles
	The full approximation scheme
	Convergence and computational complexity

	Hierarchical Hybrid Grids
	Concepts
	Primitives and data structures
	Programming languages and standards
	Software architecture
	Changes implemented within the scope of this thesis
	Usage example

	Towards petaflop performance
	Introduction
	Software engineering
	Available build systems
	Adapting SCons for HHG

	Performance analysis
	State of the art
	HHG's performance analysis toolkit

	Performance of HHG on different architectures
	Architectures
	Measurement setup for scaling tests
	Results

	Adaptive mesh refinement
	Introduction
	Refinement techniques
	Full multigrid on meshes with hanging nodes
	The basic algorithm
	The improved algorithm
	The final algorithm

	An efficient adaptive refinement algorithm
	Error estimation
	Mesh refinement

	Implementation in HHG
	The adaptive refinement algorithm
	Data structures for the refinement boundary
	The adaptive full multigrid algorithm

	Numerical results
	Model problems and geometries
	Expected results
	Observed results

	Optimization of multigrid cycles
	An error and cost model for the full multigrid algorithm
	Branch and bound optimization
	Integrating model extensions into the optimization
	Implementation
	Examples
	Theoretical examples
	Optimization of an HHG full multigrid run

	Further model extensions and related work

	Conclusion
	The complete adaptive refinement algorithm

